IDEAS home Printed from https://ideas.repec.org/p/hhb/aarbls/2004-005.html
   My bibliography  Save this paper

K shortest paths in stochastic time-dependent networks

Author

Listed:
  • Nielsen, Lars Relund

    (Biometry Research Unit)

  • Pretolani, Daniele

    (Dipartimento de Matematica e Informatica)

  • Andersen, Kim Allan

    (Department of Business Studies)

Abstract

A substantial amount of research has been devoted to the shortest path problem in networks where travel times are stochastic or (deterministic and) time-dependent. More recently, a growing interest has been attracted by networks that are both stochastic and time-dependent. In these networks, the best route choice is not necessarily a path, but rather a time-adaptive strategy that assigns successors to nodes as a function of time. In some particular cases, the shortest origin-destination path must nevertheless be chosen a priori, since time-adaptive choices are not allowed. Unfortunately, finding the a priori shortest path is NP-hard, while the best time-adaptive strategy can be found in polynomial time. In this paper, we propose a solution method for the a priori shortest path problem, and we show that it can be easily adapted to the ranking of the first K shortest paths. Moreover, we present a computational comparison of time-adaptive and a priori route choices, pointing out the effect of travel time and cost distributions. The reported results show that, under realistic distributions, our solution methods are effective

Suggested Citation

  • Nielsen, Lars Relund & Pretolani, Daniele & Andersen, Kim Allan, 2004. "K shortest paths in stochastic time-dependent networks," CORAL Working Papers L-2004-05, University of Aarhus, Aarhus School of Business, Department of Business Studies.
  • Handle: RePEc:hhb:aarbls:2004-005
    as

    Download full text from publisher

    File URL: http://www.hha.dk/afl/wp/log/L_2004_05.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nielsen, Lars Relund & Pretolani, Daniele & Andersen, Kim Allan, 2004. "Finding the K shortest hyperpaths using reoptimization," CORAL Working Papers L-2004-04, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    2. Elise D. Miller-Hooks & Hani S. Mahmassani, 2000. "Least Expected Time Paths in Stochastic, Time-Varying Transportation Networks," Transportation Science, INFORMS, vol. 34(2), pages 198-215, May.
    3. Randolph W. Hall, 1986. "The Fastest Path through a Network with Random Time-Dependent Travel Times," Transportation Science, INFORMS, vol. 20(3), pages 182-188, August.
    4. Amir Eiger & Pitu B. Mirchandani & Hossein Soroush, 1985. "Path Preferences and Optimal Paths in Probabilistic Networks," Transportation Science, INFORMS, vol. 19(1), pages 75-84, February.
    5. Pretolani, Daniele, 2000. "A directed hypergraph model for random time dependent shortest paths," European Journal of Operational Research, Elsevier, vol. 123(2), pages 315-324, June.
    6. Miller-Hooks, Elise & Mahmassani, Hani, 2003. "Path comparisons for a priori and time-adaptive decisions in stochastic, time-varying networks," European Journal of Operational Research, Elsevier, vol. 146(1), pages 67-82, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kjeldsen, Karina Hjortshøj, 2008. "Classification of routing and scheduling problems in liner shipping," CORAL Working Papers L-2008-06, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    2. Nielsen, Lars Relund & Andersen, Kim Allan & Pretolani, Daniele, 2006. "Bicriterion a priori route choice in stochastic time-dependent networks," CORAL Working Papers L-2006-10, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    3. Nielsen, Lars Relund & Kristensen, Anders Ringgaard, 2006. "Finding the K best policies in a finite-horizon Markov decision process," European Journal of Operational Research, Elsevier, vol. 175(2), pages 1164-1179, December.
    4. Tarun Rambha & Stephen D. Boyles & S. Travis Waller, 2016. "Adaptive Transit Routing in Stochastic Time-Dependent Networks," Transportation Science, INFORMS, vol. 50(3), pages 1043-1059, August.
    5. Mohammad Hossein Keyhani & Mathias Schnee & Karsten Weihe, 2017. "Arrive in Time by Train with High Probability," Transportation Science, INFORMS, vol. 51(4), pages 1122-1137, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahabi, Mehrdad & Unnikrishnan, Avinash & Boyles, Stephen D., 2013. "An outer approximation algorithm for the robust shortest path problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 58(C), pages 52-66.
    2. Wen, Liang & Çatay, Bülent & Eglese, Richard, 2014. "Finding a minimum cost path between a pair of nodes in a time-varying road network with a congestion charge," European Journal of Operational Research, Elsevier, vol. 236(3), pages 915-923.
    3. Opasanon, Sathaporn & Miller-Hooks, Elise, 2006. "Multicriteria adaptive paths in stochastic, time-varying networks," European Journal of Operational Research, Elsevier, vol. 173(1), pages 72-91, August.
    4. Nie, Yu (Marco) & Wu, Xing, 2009. "Shortest path problem considering on-time arrival probability," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 597-613, July.
    5. Yang, Lixing & Zhou, Xuesong, 2014. "Constraint reformulation and a Lagrangian relaxation-based solution algorithm for a least expected time path problem," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 22-44.
    6. Yang, Lixing & Zhou, Xuesong, 2017. "Optimizing on-time arrival probability and percentile travel time for elementary path finding in time-dependent transportation networks: Linear mixed integer programming reformulations," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 68-91.
    7. Miller-Hooks, Elise & Mahmassani, Hani, 2003. "Path comparisons for a priori and time-adaptive decisions in stochastic, time-varying networks," European Journal of Operational Research, Elsevier, vol. 146(1), pages 67-82, April.
    8. Tsung-Sheng Chang & Linda K. Nozick & Mark A. Turnquist, 2005. "Multiobjective Path Finding in Stochastic Dynamic Networks, with Application to Routing Hazardous Materials Shipments," Transportation Science, INFORMS, vol. 39(3), pages 383-399, August.
    9. Huang, He & Gao, Song, 2012. "Optimal paths in dynamic networks with dependent random link travel times," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 579-598.
    10. Prakash, A. Arun, 2018. "Pruning algorithm for the least expected travel time path on stochastic and time-dependent networks," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 127-147.
    11. He Huang & Song Gao, 2018. "Trajectory-Adaptive Routing in Dynamic Networks with Dependent Random Link Travel Times," Transportation Science, INFORMS, vol. 52(1), pages 102-117, January.
    12. Srinivasan, Karthik K. & Prakash, A.A. & Seshadri, Ravi, 2014. "Finding most reliable paths on networks with correlated and shifted log–normal travel times," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 110-128.
    13. A. Arun Prakash & Karthik K. Srinivasan, 2018. "Pruning Algorithms to Determine Reliable Paths on Networks with Random and Correlated Link Travel Times," Transportation Science, INFORMS, vol. 52(1), pages 80-101, January.
    14. David Corredor-Montenegro & Nicolás Cabrera & Raha Akhavan-Tabatabaei & Andrés L. Medaglia, 2021. "On the shortest $$\alpha$$ α -reliable path problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 287-318, April.
    15. Yu Nie & Xing Wu & Tito Homem-de-Mello, 2012. "Optimal Path Problems with Second-Order Stochastic Dominance Constraints," Networks and Spatial Economics, Springer, vol. 12(4), pages 561-587, December.
    16. A. Arun Prakash & Karthik K. Srinivasan, 2017. "Finding the Most Reliable Strategy on Stochastic and Time-Dependent Transportation Networks: A Hypergraph Based Formulation," Networks and Spatial Economics, Springer, vol. 17(3), pages 809-840, September.
    17. Thomas, Barrett W. & White III, Chelsea C., 2007. "The dynamic shortest path problem with anticipation," European Journal of Operational Research, Elsevier, vol. 176(2), pages 836-854, January.
    18. Tarun Rambha & Stephen D. Boyles & S. Travis Waller, 2016. "Adaptive Transit Routing in Stochastic Time-Dependent Networks," Transportation Science, INFORMS, vol. 50(3), pages 1043-1059, August.
    19. Wu, Xing & (Marco) Nie, Yu, 2011. "Modeling heterogeneous risk-taking behavior in route choice: A stochastic dominance approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 896-915, November.
    20. Ehsan Jafari & Stephen D. Boyles, 2017. "Multicriteria Stochastic Shortest Path Problem for Electric Vehicles," Networks and Spatial Economics, Springer, vol. 17(3), pages 1043-1070, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhb:aarbls:2004-005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Helle Vinbaek Stenholt (email available below). General contact details of provider: https://edirc.repec.org/data/ifhhadk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.