IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04103628.html
   My bibliography  Save this paper

Exact and metaheuristic approaches to solve the integrated production scheduling, berth allocation and storage yard allocation problem

Author

Listed:
  • Nicolas Cheimanoff
  • Pierre Féniès

    (LARGEPA - Laboratoire de recherche en sciences de gestion Panthéon-Assas - Université Paris-Panthéon-Assas)

  • Mohamed Nour Kitri
  • Nikolay Tchernev

    (LIMOS - Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes - ENSM ST-ETIENNE - Ecole Nationale Supérieure des Mines de St Etienne - CNRS - Centre National de la Recherche Scientifique - UCA - Université Clermont Auvergne - INP Clermont Auvergne - Institut national polytechnique Clermont Auvergne - UCA - Université Clermont Auvergne)

Abstract

No abstract is available for this item.

Suggested Citation

  • Nicolas Cheimanoff & Pierre Féniès & Mohamed Nour Kitri & Nikolay Tchernev, 2023. "Exact and metaheuristic approaches to solve the integrated production scheduling, berth allocation and storage yard allocation problem," Post-Print hal-04103628, HAL.
  • Handle: RePEc:hal:journl:hal-04103628
    DOI: 10.1016/j.cor.2023.106174
    Note: View the original document on HAL open archive server: https://univ-pantheon-assas.hal.science/hal-04103628v1
    as

    Download full text from publisher

    File URL: https://univ-pantheon-assas.hal.science/hal-04103628v1/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.cor.2023.106174?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andreas T. Ernst & Ceyda Oğuz & Gaurav Singh & Gita Taherkhani, 2017. "Mathematical models for the berth allocation problem in dry bulk terminals," Journal of Scheduling, Springer, vol. 20(5), pages 459-473, October.
    2. Mauricio G. C. Resende & Celso C. Ribeiro, 2019. "Greedy Randomized Adaptive Search Procedures: Advances and Extensions," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, edition 3, chapter 0, pages 169-220, Springer.
    3. Eugeniusz Nowicki & Czeslaw Smutnicki, 1996. "A Fast Taboo Search Algorithm for the Job Shop Problem," Management Science, INFORMS, vol. 42(6), pages 797-813, June.
    4. Stéphane Dauzère-Pérès & Jan Paulli, 1997. "An integrated approach for modeling and solving the general multiprocessor job-shop scheduling problem using tabu search," Annals of Operations Research, Springer, vol. 70(0), pages 281-306, April.
    5. Lalla-Ruiz, Eduardo & Expósito-Izquierdo, Christopher & Melián-Batista, Belén & Moreno-Vega, J. Marcos, 2016. "A Set-Partitioning-based model for the Berth Allocation Problem under Time-Dependent Limitations," European Journal of Operational Research, Elsevier, vol. 250(3), pages 1001-1012.
    6. Xu, Dongsheng & Li, Chung-Lun & Leung, Joseph Y.-T., 2012. "Berth allocation with time-dependent physical limitations on vessels," European Journal of Operational Research, Elsevier, vol. 216(1), pages 47-56.
    7. Grabowski, J. & Nowicki, E. & Zdrzalka, S., 1986. "A block approach for single-machine scheduling with release dates and due dates," European Journal of Operational Research, Elsevier, vol. 26(2), pages 278-285, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Zhendi & Ji, Mingjun & Kong, Lingrui & Hou, Xinhao, 2024. "Scheduling of automated ore terminal operations based on fixed inflow rhythm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Baoli & Li, Zhi-Chun & Sheng, Dian & Wang, Yadong, 2021. "Integrated planning of berth allocation and vessel sequencing in a seaport with one-way navigation channel," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 23-47.
    2. Unsal, Ozgur & Oguz, Ceyda, 2019. "An exact algorithm for integrated planning of operations in dry bulk terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 103-121.
    3. Issam Krimi & Raca Todosijević & Rachid Benmansour & Mustapha Ratli & Abdessamad Ait Cadi & Afaf Aloullal, 2020. "Modelling and solving the multi-quays berth allocation and crane assignment problem with availability constraints," Journal of Global Optimization, Springer, vol. 78(2), pages 349-373, October.
    4. Alessandro Hill & Eduardo Lalla-Ruiz & Stefan Voß & Marcos Goycoolea, 2019. "A multi-mode resource-constrained project scheduling reformulation for the waterway ship scheduling problem," Journal of Scheduling, Springer, vol. 22(2), pages 173-182, April.
    5. Groflin, Heinz & Klinkert, Andreas, 2007. "Feasible insertions in job shop scheduling, short cycles and stable sets," European Journal of Operational Research, Elsevier, vol. 177(2), pages 763-785, March.
    6. Shen, Liji & Buscher, Udo, 2012. "Solving the serial batching problem in job shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 221(1), pages 14-26.
    7. Rossi, Andrea, 2014. "Flexible job shop scheduling with sequence-dependent setup and transportation times by ant colony with reinforced pheromone relationships," International Journal of Production Economics, Elsevier, vol. 153(C), pages 253-267.
    8. Jain, A. S. & Meeran, S., 1999. "Deterministic job-shop scheduling: Past, present and future," European Journal of Operational Research, Elsevier, vol. 113(2), pages 390-434, March.
    9. Negenman, Ebbe G., 2001. "Local search algorithms for the multiprocessor flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 128(1), pages 147-158, January.
    10. Tamssaouet, Karim & Dauzère-Pérès, Stéphane, 2023. "A general efficient neighborhood structure framework for the job-shop and flexible job-shop scheduling problems," European Journal of Operational Research, Elsevier, vol. 311(2), pages 455-471.
    11. Gregory A. Kasapidis & Dimitris C. Paraskevopoulos & Panagiotis P. Repoussis & Christos D. Tarantilis, 2021. "Flexible Job Shop Scheduling Problems with Arbitrary Precedence Graphs," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4044-4068, November.
    12. Kai Wang & Lu Zhen & Shuaian Wang, 2018. "Column Generation for the Integrated Berth Allocation, Quay Crane Assignment, and Yard Assignment Problem," Transportation Science, INFORMS, vol. 52(4), pages 812-834, August.
    13. Shen, Liji & Dauzère-Pérès, Stéphane & Maecker, Söhnke, 2023. "Energy cost efficient scheduling in flexible job-shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 310(3), pages 992-1016.
    14. Pezzella, Ferdinando & Merelli, Emanuela, 2000. "A tabu search method guided by shifting bottleneck for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 120(2), pages 297-310, January.
    15. Hurink, Johann & Knust, Sigrid, 2005. "Tabu search algorithms for job-shop problems with a single transport robot," European Journal of Operational Research, Elsevier, vol. 162(1), pages 99-111, April.
    16. Shen, Liji & Dauzère-Pérès, Stéphane & Neufeld, Janis S., 2018. "Solving the flexible job shop scheduling problem with sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 265(2), pages 503-516.
    17. González, Miguel A. & Vela, Camino R. & Varela, Ramiro, 2015. "Scatter search with path relinking for the flexible job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 245(1), pages 35-45.
    18. Ya Xu & Kelei Xue & Yuquan Du, 2018. "Berth Scheduling Problem Considering Traffic Limitations in the Navigation Channel," Sustainability, MDPI, vol. 10(12), pages 1-22, December.
    19. Drótos, Márton & Erdos, Gábor & Kis, Tamás, 2009. "Computing lower and upper bounds for a large-scale industrial job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 197(1), pages 296-306, August.
    20. Correcher, Juan Francisco & Van den Bossche, Thomas & Alvarez-Valdes, Ramon & Vanden Berghe, Greet, 2019. "The berth allocation problem in terminals with irregular layouts," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1096-1108.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04103628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.