IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02550789.html

Nonparametric Assessment of Hedge Fund Performance

Author

Listed:
  • Caio Almeida

    (TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - Comue de Toulouse - Communauté d'universités et établissements de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

  • Kim Ardison

    (FGV-EPGE - Universidad de Brazil)

  • René Garcia

    (TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - Comue de Toulouse - Communauté d'universités et établissements de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

Abstract

We propose a new class of performance measures for Hedge Fund (HF) returns based on a family of empirically identifiable stochastic discount factors (SDFs). The SDF-based measures incorporate no-arbitrage pricing restrictions and naturally embed information about higher-order mixed moments between HF and benchmark factors returns. We provide a full asymptotic theory for our SDF estimators to test for the statistical significance of each fund's performance and for the relevance of individual benchmark factors within each proposed measure. We apply our methodology to a panel of 4815 individual hedge funds. Our empirical analysis reveals that fewer funds have a statistically significant positive alpha compared to the Jensen's alpha obtained by the traditional linear regression approach. Moreover, the funds' rankings vary considerably between the two approaches. Performance also varies between the members of our family because of a different fund exposure to higher-order moments of the benchmark factors, highlighting the potential heterogeneity across investors in evaluating performance. (C) 2019 Elsevier B.V. All rights reserved.

Suggested Citation

  • Caio Almeida & Kim Ardison & René Garcia, 2020. "Nonparametric Assessment of Hedge Fund Performance," Post-Print hal-02550789, HAL.
  • Handle: RePEc:hal:journl:hal-02550789
    DOI: 10.1016/j.jeconom.2019.08.002
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Milad Nozari, 2021. "Information content of the risk-free rate for the pricing kernel bound," Journal of Asset Management, Palgrave Macmillan, vol. 22(4), pages 267-276, July.
    2. Elisa Becker‐Foss, 2024. "Performance and reporting predictability of hedge funds," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 2257-2278, September.
    3. Ghosh, Anisha & Julliard, Christian & Taylor, Alex. P, 2025. "An information-theoretic asset pricing model," LSE Research Online Documents on Economics 126155, London School of Economics and Political Science, LSE Library.
    4. Jin Yuan & Xianghui Yuan, 2023. "A Comprehensive Method for Ranking Mutual Fund Performance," SAGE Open, , vol. 13(2), pages 21582440231, May.
    5. Ardia, David & Barras, Laurent & Gagliardini, Patrick & Scaillet, Olivier, 2024. "Is it alpha or beta? Decomposing hedge fund returns when models are misspecified," Journal of Financial Economics, Elsevier, vol. 154(C).
    6. Yahyaei, Hamid & Singh, Abhay & Smith, Tom, 2025. "How does the smart money feel? Hedge fund sentiment, returns, and the business cycle," Journal of Behavioral and Experimental Finance, Elsevier, vol. 47(C).
    7. Fletcher, Jonathan, 2021. "Evaluating the performance of U.S. international equity closed-end funds," Journal of Multinational Financial Management, Elsevier, vol. 60(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02550789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.