IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02150581.html
   My bibliography  Save this paper

Assesment of the Demand Respons Aplication in Europe and its Complementary/Competitive Character with Storage Technologies

Author

Listed:
  • Juan Jose Cortez

    (GAEL - Laboratoire d'Economie Appliquée de Grenoble - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - INRA - Institut National de la Recherche Agronomique - CNRS - Centre National de la Recherche Scientifique - UGA [2016-2019] - Université Grenoble Alpes [2016-2019])

  • A. Bidaud

    (LPSC - Laboratoire de Physique Subatomique et de Cosmologie - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - IN2P3 - Institut National de Physique Nucléaire et de Physique des Particules du CNRS - CNRS - Centre National de la Recherche Scientifique - UGA [2016-2019] - Université Grenoble Alpes [2016-2019])

  • Silvana Mima

    (GAEL - Laboratoire d'Economie Appliquée de Grenoble - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - INRA - Institut National de la Recherche Agronomique - CNRS - Centre National de la Recherche Scientifique - UGA [2016-2019] - Université Grenoble Alpes [2016-2019])

  • Gabin Mantulet

    (GAEL - Laboratoire d'Economie Appliquée de Grenoble - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - INRA - Institut National de la Recherche Agronomique - CNRS - Centre National de la Recherche Scientifique - UGA [2016-2019] - Université Grenoble Alpes [2016-2019], LPSC - Laboratoire de Physique Subatomique et de Cosmologie - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - IN2P3 - Institut National de Physique Nucléaire et de Physique des Particules du CNRS - CNRS - Centre National de la Recherche Scientifique - UGA [2016-2019] - Université Grenoble Alpes [2016-2019])

  • Elena Stolyarova

    (LPSC - Laboratoire de Physique Subatomique et de Cosmologie - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - IN2P3 - Institut National de Physique Nucléaire et de Physique des Particules du CNRS - CNRS - Centre National de la Recherche Scientifique - UGA [2016-2019] - Université Grenoble Alpes [2016-2019])

Abstract

Renewable energy sources are expected to take a very large share of electricity production in 2 degrees scenarios. The main objective of the study is to analyze the use of the demand response (DR) in high variable renewable depending electric power systems and explore the potential advantages of using DR to compensate intermittency. We also considered the interactions of DR with the entire power system, including the other flexibility options (storage, electric grid, and dispastchable power plants) using European Unit Commitment And Dispatch (EUCAD) model. In the supply and demand balance modelling, DR is similar to electricity storage: they both displace an electric load between two time-periods, although their technical operating constraints differ which makes their economic models and behaviours slightly different. We perform studies with very different renewable shares which are expected to be representative of different time horizons, today, in 2030 and 2060, years. We found that the need for implicit DR grows up to 20 % of the peak load but might have a value after which its use is saturated. Surprisingly, the competition with storage capacities appear to be very limited. Regarding to explicit DR, the level of usage is more sensible to the price when the high VRE claims for more flexibility.

Suggested Citation

  • Juan Jose Cortez & A. Bidaud & Silvana Mima & Gabin Mantulet & Elena Stolyarova, 2019. "Assesment of the Demand Respons Aplication in Europe and its Complementary/Competitive Character with Storage Technologies," Post-Print hal-02150581, HAL.
  • Handle: RePEc:hal:journl:hal-02150581
    Note: View the original document on HAL open archive server: https://hal.science/hal-02150581v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-02150581v1/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gils, Hans Christian, 2014. "Assessment of the theoretical demand response potential in Europe," Energy, Elsevier, vol. 67(C), pages 1-18.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    2. Fabietti, Luca & Qureshi, Faran A. & Gorecki, Tomasz T. & Salzmann, Christophe & Jones, Colin N., 2018. "Multi-time scale coordination of complementary resources for the provision of ancillary services," Applied Energy, Elsevier, vol. 229(C), pages 1164-1180.
    3. Xu, Xiaojing & Chen, Chien-fei & Zhu, Xiaojuan & Hu, Qinran, 2018. "Promoting acceptance of direct load control programs in the United States: Financial incentive versus control option," Energy, Elsevier, vol. 147(C), pages 1278-1287.
    4. Julien Ancel, 2025. "Tariffs time-dynamics in competitive electricity retail markets with differentiated consumer reactions," Post-Print hal-05100663, HAL.
    5. Frischmuth, Felix & Härtel, Philipp, 2022. "Hydrogen sourcing strategies and cross-sectoral flexibility trade-offs in net-neutral energy scenarios for Europe," Energy, Elsevier, vol. 238(PB).
    6. Michael Schoepf & Martin Weibelzahl & Lisa Nowka, 2018. "The Impact of Substituting Production Technologies on the Economic Demand Response Potential in Industrial Processes," Energies, MDPI, vol. 11(9), pages 1-13, August.
    7. Williams, B. & Bishop, D., 2024. "Flexible futures: The potential for electrical energy demand response in New Zealand," Energy Policy, Elsevier, vol. 195(C).
    8. Schill, Wolf-Peter & Zerrahn, Alexander, 2020. "Flexible electricity use for heating in markets with renewable energy," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 266.
    9. Roos, Aleksandra & Bolkesjø, Torjus Folsland, 2018. "Value of demand flexibility on spot and reserve electricity markets in future power system with increased shares of variable renewable energy," Energy, Elsevier, vol. 144(C), pages 207-217.
    10. Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).
    11. Andre Leippi & Markus Fleschutz & Michael D. Murphy, 2022. "A Review of EV Battery Utilization in Demand Response Considering Battery Degradation in Non-Residential Vehicle-to-Grid Scenarios," Energies, MDPI, vol. 15(9), pages 1-22, April.
    12. Ran, Fengming & Gao, Dian-ce & Zhang, Xu & Chen, Shuyue, 2020. "A virtual sensor based self-adjusting control for HVAC fast demand response in commercial buildings towards smart grid applications," Applied Energy, Elsevier, vol. 269(C).
    13. Bri‐Mathias S. Hodge & Himanshu Jain & Carlo Brancucci & Gab‐Su Seo & Magnus Korpås & Juha Kiviluoma & Hannele Holttinen & James Charles Smith & Antje Orths & Ana Estanqueiro & Lennart Söder & Damian , 2020. "Addressing technical challenges in 100% variable inverter‐based renewable energy power systems," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(5), September.
    14. Lechl, Michael & Fürmann, Tim & de Meer, Hermann & Weidlich, Anke, 2023. "A review of models for energy system flexibility requirements and potentials using the new FLEXBLOX taxonomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    15. Ribó-Pérez, David & Heleno, Miguel & Álvarez-Bel, Carlos, 2021. "The flexibility gap: Socioeconomic and geographical factors driving residential flexibility," Energy Policy, Elsevier, vol. 153(C).
    16. Richstein, Jörn C. & Hosseinioun, Seyed Saeed, 2020. "Industrial demand response: How network tariffs and regulation (do not) impact flexibility provision in electricity markets and reserves," Applied Energy, Elsevier, vol. 278(C).
    17. Misconel, Steffi & Zöphel, Christoph & Möst, Dominik, 2021. "Assessing the value of demand response in a decarbonized energy system – A large-scale model application," Applied Energy, Elsevier, vol. 299(C).
    18. Schreiber, Michael & Wainstein, Martin E. & Hochloff, Patrick & Dargaville, Roger, 2015. "Flexible electricity tariffs: Power and energy price signals designed for a smarter grid," Energy, Elsevier, vol. 93(P2), pages 2568-2581.
    19. Keles, Dogan & Bublitz, Andreas & Zimmermann, Florian & Genoese, Massimo & Fichtner, Wolf, 2016. "Analysis of design options for the electricity market: The German case," Applied Energy, Elsevier, vol. 183(C), pages 884-901.
    20. Máximo A. Domínguez-Garabitos & Víctor S. Ocaña-Guevara & Félix Santos-García & Adriana Arango-Manrique & Miguel Aybar-Mejía, 2022. "A Methodological Proposal for Implementing Demand-Shifting Strategies in the Wholesale Electricity Market," Energies, MDPI, vol. 15(4), pages 1-28, February.

    More about this item

    Keywords

    ;
    ;
    ;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02150581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.