IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00846830.html
   My bibliography  Save this paper

Stochastic Target Games and Dynamic Programming via Regularized Viscosity Solutions

Author

Listed:
  • Bruno Bouchard

    (CREST - Centre de Recherche en Économie et Statistique - ENSAI - Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] - GENES - Groupe des Écoles Nationales d'Économie et Statistique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - ENSAE Paris - École Nationale de la Statistique et de l'Administration Économique - GENES - Groupe des Écoles Nationales d'Économie et Statistique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique, CEREMADE - CEntre de REcherches en MAthématiques de la DEcision - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique)

  • Marcel Nutz

    (Dept. of Mathematics - Columbia University [New York])

Abstract

We study a class of stochastic target games where one player tries to find a strategy such that the state process almost-surely reaches a given target, no matter which action is chosen by the opponent. Our main result is a geometric dynamic programming principle which allows us to characterize the value function as the viscosity solution of a non-linear partial differential equation. Because abstract mea-surable selection arguments cannot be used in this context, the main obstacle is the construction of measurable almost-optimal strategies. We propose a novel approach where smooth supersolutions are used to define almost-optimal strategies of Markovian type, similarly as in ver-ification arguments for classical solutions of Hamilton–Jacobi–Bellman equations. The smooth supersolutions are constructed by an exten-sion of Krylov's method of shaken coefficients. We apply our results to a problem of option pricing under model uncertainty with different interest rates for borrowing and lending.

Suggested Citation

  • Bruno Bouchard & Marcel Nutz, 2015. "Stochastic Target Games and Dynamic Programming via Regularized Viscosity Solutions," Post-Print hal-00846830, HAL.
  • Handle: RePEc:hal:journl:hal-00846830
    DOI: 10.1287/moor.2015.0718
    Note: View the original document on HAL open archive server: https://hal.science/hal-00846830v2
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00846830v2/document
    Download Restriction: no

    File URL: https://libkey.io/10.1287/moor.2015.0718?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Soner, H. Mete & Touzi, Nizar & Zhang, Jianfeng, 2011. "Martingale representation theorem for the G-expectation," Stochastic Processes and their Applications, Elsevier, vol. 121(2), pages 265-287, February.
    2. Erhan Bayraktar & Jiaqi Li, 2014. "Stochastic Perron for stochastic target games," Papers 1408.6799, arXiv.org, revised Apr 2016.
    3. Revaz Tevzadze & Teimuraz Toronjadze & Tamaz Uzunashvili, 2013. "Robust utility maximization for a diffusion market model with misspecified coefficients," Finance and Stochastics, Springer, vol. 17(3), pages 535-563, July.
    4. Ariel Neufeld & Marcel Nutz, 2012. "Superreplication under Volatility Uncertainty for Measurable Claims," Papers 1208.6486, arXiv.org, revised Apr 2013.
    5. Denis Talay & Ziyu Zheng, 2002. "Worst case model risk management," Finance and Stochastics, Springer, vol. 6(4), pages 517-537.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Romuald Elie & Ludovic Moreau & Dylan Possamai, 2017. "On a class of path-dependent singular stochastic control problems," Papers 1701.08861, arXiv.org, revised Feb 2018.
    2. Erhan Bayraktar & Jiaqi Li, 2016. "Stochastic Perron for Stochastic Target Problems," Journal of Optimization Theory and Applications, Springer, vol. 170(3), pages 1026-1054, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruno Bouchard & Marcel Nutz, 2016. "Stochastic Target Games and Dynamic Programming via Regularized Viscosity Solutions," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 109-124, February.
    2. Marcel Nutz, 2013. "Utility Maximization under Model Uncertainty in Discrete Time," Papers 1307.3597, arXiv.org.
    3. Nutz, Marcel, 2015. "Robust superhedging with jumps and diffusion," Stochastic Processes and their Applications, Elsevier, vol. 125(12), pages 4543-4555.
    4. Yan Dolinsky & Jonathan Zouari, 2019. "The Value of Insider Information for Super--Replication with Quadratic Transaction Costs," Papers 1910.09855, arXiv.org, revised Sep 2020.
    5. Hu, Ying & Tang, Shanjian & Wang, Falei, 2022. "Quadratic G-BSDEs with convex generators and unbounded terminal conditions," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 363-390.
    6. Marcel Nutz, 2014. "Superreplication under model uncertainty in discrete time," Finance and Stochastics, Springer, vol. 18(4), pages 791-803, October.
    7. Bogdan Iftimie, 2023. "A robust investment-consumption optimization problem in a switching regime interest rate setting," Journal of Global Optimization, Springer, vol. 86(3), pages 713-739, July.
    8. Daniel Bartl & Michael Kupper & Ariel Neufeld, 2021. "Duality theory for robust utility maximisation," Finance and Stochastics, Springer, vol. 25(3), pages 469-503, July.
    9. Marcel Nutz, 2013. "Superreplication under Model Uncertainty in Discrete Time," Papers 1301.3227, arXiv.org, revised Feb 2014.
    10. Zongxia Liang & Ming Ma, 2020. "Robust consumption‐investment problem under CRRA and CARA utilities with time‐varying confidence sets," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 1035-1072, July.
    11. Francesca Biagini & Yinglin Zhang, 2017. "Reduced-form framework under model uncertainty," Papers 1707.04475, arXiv.org, revised Mar 2018.
    12. Marcel Nutz, 2014. "Robust Superhedging with Jumps and Diffusion," Papers 1407.1674, arXiv.org, revised Jul 2015.
    13. Bruno Bouchard & Marcel Nutz, 2013. "Arbitrage and duality in nondominated discrete-time models," Papers 1305.6008, arXiv.org, revised Mar 2015.
    14. Ariel Neufeld & Marcel Nutz, 2015. "Robust Utility Maximization with L\'evy Processes," Papers 1502.05920, arXiv.org, revised Mar 2016.
    15. Ludovic Tangpi, 2018. "Efficient hedging under ambiguity in continuous time," Papers 1812.10876, arXiv.org, revised Mar 2019.
    16. Thibaut Mastrolia & Dylan Possamaï, 2018. "Moral Hazard Under Ambiguity," Journal of Optimization Theory and Applications, Springer, vol. 179(2), pages 452-500, November.
    17. Bruno Bouchard & Gr'egoire Loeper & Xiaolu Tan, 2021. "A $C^{0,1}$-functional It\^o's formula and its applications in mathematical finance," Papers 2101.03759, arXiv.org.
    18. Kim Weston, 2016. "Stability of utility maximization in nonequivalent markets," Finance and Stochastics, Springer, vol. 20(2), pages 511-541, April.
    19. Peter Carr & Travis Fisher & Johannes Ruf, 2014. "On the hedging of options on exploding exchange rates," Finance and Stochastics, Springer, vol. 18(1), pages 115-144, January.

    More about this item

    Keywords

    Stochastic differential game; Knightian uncertainty; 91B28; Shaking of coefficients; Viscosity solution AMS 2000 Subject Classification 93E20; 49L20; Stochastic target;
    All these keywords.

    JEL classification:

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00846830. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.