IDEAS home Printed from https://ideas.repec.org/p/fip/fedgfe/2014-114.html
   My bibliography  Save this paper

Efficient Monte Carlo Counterparty Credit Risk Pricing and Measurement

Author

Listed:
  • Samim Ghamami
  • Bo Zhang

Abstract

Counterparty credit risk (CCR), a key driver of the 2007-08 credit crisis, has become one of the main focuses of the major global and U.S. regulatory standards. Financial institutions invest large amounts of resources employing Monte Carlo simulation to measure and price their counterparty credit risk. We develop efficient Monte Carlo CCR estimation frameworks by focusing on the most widely used and regulatory-driven CCR measures: expected positive exposure (EPE), credit value adjustment (CVA), and effective expected positive exposure (EEPE). Our numerical examples illustrate that our proposed efficient Monte Carlo estimators outperform the existing crude estimators of these CCR measures substantially in terms of mean square error (MSE). We also demonstrate that the two widely used sampling methods, the so-called Path Dependent Simulation (PDS) and Direct Jump to Simulation date (DJS), are not equivalent in that they lead to Monte Carlo CCR estimators which are drastically different in terms of their MSE.

Suggested Citation

  • Samim Ghamami & Bo Zhang, 2014. "Efficient Monte Carlo Counterparty Credit Risk Pricing and Measurement," Finance and Economics Discussion Series 2014-114, Board of Governors of the Federal Reserve System (U.S.).
  • Handle: RePEc:fip:fedgfe:2014-114
    as

    Download full text from publisher

    File URL: http://www.federalreserve.gov/econresdata/feds/2014/files/2014114pap.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 1999. "Asymptotically Optimal Importance Sampling and Stratification for Pricing Path‐Dependent Options," Mathematical Finance, Wiley Blackwell, vol. 9(2), pages 117-152, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuriy Krepkiy & Asif Lakhany & Amber Zhang, 2021. "Efficient Least Squares Monte-Carlo Technique for PFE/EE Calculations," Papers 2105.07061, arXiv.org.
    2. Samim Ghamami, 2015. "Static models of central counterparty risk," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 2(02), pages 1-36.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pierre L'Ecuyer & Christiane Lemieux, 2000. "Variance Reduction via Lattice Rules," Management Science, INFORMS, vol. 46(9), pages 1214-1235, September.
    2. Reiichiro Kawai, 2008. "Adaptive Monte Carlo Variance Reduction for Lévy Processes with Two-Time-Scale Stochastic Approximation," Methodology and Computing in Applied Probability, Springer, vol. 10(2), pages 199-223, June.
    3. Xueping Wu & Jin Zhang, 1999. "Options on the minimum or the maximum of two average prices," Review of Derivatives Research, Springer, vol. 3(2), pages 183-204, May.
    4. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 2000. "Variance Reduction Techniques for Estimating Value-at-Risk," Management Science, INFORMS, vol. 46(10), pages 1349-1364, October.
    5. Shih-Kuei Lin & Ren-Her Wang & Cheng-Der Fuh, 2006. "Risk Management for Linear and Non-Linear Assets: A Bootstrap Method with Importance Resampling to Evaluate Value-at-Risk," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 13(3), pages 261-295, September.
    6. Xiaoqun Wang & Ken Seng Tan, 2013. "Pricing and Hedging with Discontinuous Functions: Quasi-Monte Carlo Methods and Dimension Reduction," Management Science, INFORMS, vol. 59(2), pages 376-389, July.
    7. Lapeyre Bernard & Lelong Jérôme, 2011. "A framework for adaptive Monte Carlo procedures," Monte Carlo Methods and Applications, De Gruyter, vol. 17(1), pages 77-98, January.
    8. Genin, Adrien & Tankov, Peter, 2020. "Optimal importance sampling for Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 130(1), pages 20-46.
    9. Bernard Lapeyre & J'er^ome Lelong, 2010. "A framework for adaptive Monte-Carlo procedures," Papers 1001.3551, arXiv.org, revised Jul 2010.
    10. Adam W. Kolkiewicz, 2016. "Efficient Hedging Of Path–Dependent Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1-27, August.
    11. Ma, Xiaocui & Xi, Fubao, 2017. "Moderate deviations for neutral stochastic differential delay equations with jumps," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 97-107.
    12. Xiaoqun Wang & Ian H. Sloan, 2011. "Quasi-Monte Carlo Methods in Financial Engineering: An Equivalence Principle and Dimension Reduction," Operations Research, INFORMS, vol. 59(1), pages 80-95, February.
    13. Pierre Etore & Gersende Fort & Benjamin Jourdain & Eric Moulines, 2011. "On adaptive stratification," Annals of Operations Research, Springer, vol. 189(1), pages 127-154, September.
    14. Louis-Pierre Arguin & Nien-Lin Liu & Tai-Ho Wang, 2018. "Most-Likely-Path In Asian Option Pricing Under Local Volatility Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(05), pages 1-32, August.
    15. Alaya, Mohamed Ben & Hajji, Kaouther & Kebaier, Ahmed, 2016. "Importance sampling and statistical Romberg method for Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 126(7), pages 1901-1931.
    16. Dingeç, Kemal Dinçer & Hörmann, Wolfgang, 2013. "Control variates and conditional Monte Carlo for basket and Asian options," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 421-434.
    17. Nabil Kahale, 2018. "General multilevel Monte Carlo methods for pricing discretely monitored Asian options," Papers 1805.09427, arXiv.org, revised Sep 2018.
    18. Nabil Kahalé, 2020. "Randomized Dimension Reduction for Monte Carlo Simulations," Management Science, INFORMS, vol. 66(3), pages 1421-1439, March.
    19. Adrien Genin & Peter Tankov, 2016. "Optimal importance sampling for L\'evy Processes," Papers 1608.04621, arXiv.org.
    20. Kawai Reiichiro, 2007. "Adaptive Monte Carlo Variance Reduction with Two-time-scale Stochastic Approximation," Monte Carlo Methods and Applications, De Gruyter, vol. 13(3), pages 197-217, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedgfe:2014-114. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/frbgvus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (email available below). General contact details of provider: https://edirc.repec.org/data/frbgvus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.