IDEAS home Printed from https://ideas.repec.org/p/fip/fedawp/2015-07.html
   My bibliography  Save this paper

Multivariate return decomposition: theory and implications

Author

Listed:

Abstract

In this paper, we propose a model based on multivariate decomposition of multiplicative—absolute values and signs—components of several returns. In the m-variate case, the marginals for the m absolute values and the binary marginals for the m directions are linked through a 2m-dimensional copula. The approach is detailed in the case of a bivariate decomposition. We outline the construction of the likelihood function and the computation of different conditional measures. The finite-sample properties of the maximum likelihood estimator are assessed by simulation. An application to predicting bond returns illustrates the usefulness of the proposed method.

Suggested Citation

  • Anatolyev, Stanislav & Gospodinov, Nikolay, 2015. "Multivariate return decomposition: theory and implications," FRB Atlanta Working Paper 2015-7, Federal Reserve Bank of Atlanta.
  • Handle: RePEc:fip:fedawp:2015-07
    as

    Download full text from publisher

    File URL: https://www.frbatlanta.org/-/media/Documents/research/publications/wp/2015/07.pdf?la=en
    File Function: Full text
    Download Restriction: no

    References listed on IDEAS

    as
    1. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, January.
    2. Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2007. "A Model for Multivariate Non-negative Valued Processes in Financial Econometrics," Econometrics Working Papers Archive wp2007_16, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    3. Scott Joslin & Marcel Priebsch & Kenneth J. Singleton, 2014. "Risk Premiums in Dynamic Term Structure Models with Unspanned Macro Risks," Journal of Finance, American Finance Association, vol. 69(3), pages 1197-1233, June.
    4. John H. Cochrane & Monika Piazzesi, 2005. "Bond Risk Premia," American Economic Review, American Economic Association, vol. 95(1), pages 138-160, March.
    5. Chernov, Mikhail & Mueller, Philippe, 2012. "The term structure of inflation expectations," Journal of Financial Economics, Elsevier, vol. 106(2), pages 367-394.
    6. Nyberg, Henri, 2014. "A Bivariate Autoregressive Probit Model: Business Cycle Linkages And Transmission Of Recession Probabilities," Macroeconomic Dynamics, Cambridge University Press, vol. 18(04), pages 838-862, June.
    7. Sydney C. Ludvigson & Serena Ng, 2009. "Macro Factors in Bond Risk Premia," Review of Financial Studies, Society for Financial Studies, vol. 22(12), pages 5027-5067, December.
    8. Anatolyev, Stanislav & Gospodinov, Nikolay, 2010. "Modeling Financial Return Dynamics via Decomposition," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 232-245.
    9. Liu, Xiaochun & Luger, Richard, 2015. "Unfolded GARCH models," Journal of Economic Dynamics and Control, Elsevier, vol. 58(C), pages 186-217.
    10. Anatolyev Stanislav, 2009. "Multi-Market Direction-of-Change Modeling Using Dependence Ratios," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(1), pages 1-24, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gospodinov, Nikolay, 2017. "Asset Co-movements: Features and Challenges," FRB Atlanta Working Paper 2017-11, Federal Reserve Bank of Atlanta.
    2. Chen, Nan-Kuang & Chen, Shiu-Sheng & Chou, Yu-Hsi, 2017. "Further evidence on bear market predictability: The role of the external finance premium," International Review of Economics & Finance, Elsevier, vol. 50(C), pages 106-121.

    More about this item

    Keywords

    multivariate decomposition; multiplicative components; volatility and direction models; copula; dependence;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedawp:2015-07. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Elaine Clokey). General contact details of provider: http://edirc.repec.org/data/frbatus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.