IDEAS home Printed from https://ideas.repec.org/p/fae/wpaper/2017.10.html
   My bibliography  Save this paper

Assessing the sustainability of optimal pollution paths in a world with inertia

Author

Listed:
  • Marc Leandri

    () (UniversitŽ de Versailles Saint Quentin Ð CEMOTEV)

  • Mabel Tidball

    () (INRA-LAMETA)

Abstract

Most formal optimal pollution control models assume a constant natural assimilative capacity, despite the biophysical evidence on feedback effects that can degrade this environmental function, as it is the case with the reduction of ocean carbon sinks in the context of climate change. The few models that do consider this degradation establish a bijective relation between the pollution stock and the assimilative capacity, thus ignoring the inertia mechanism at stake. Indeed the level of assimilative capacity is not solely determined by the current pollution stock but by the history of this stock and by the time the ecosystem remains above the degradation threshold. We propose an inertia assessment tool that tests the sustainability of any benchmark optimal pollution path when the inertia of the assimilative capacity degradation process is taken into account. Our simulations show a strong sensitivity to both the inertia degradation speed and the discount rate.

Suggested Citation

  • Marc Leandri & Mabel Tidball, 2017. "Assessing the sustainability of optimal pollution paths in a world with inertia," Working Papers 2017.10, FAERE - French Association of Environmental and Resource Economists.
  • Handle: RePEc:fae:wpaper:2017.10
    as

    Download full text from publisher

    File URL: http://faere.fr/pub/WorkingPapers/L%C3%A9andri_Tidball_FAERE_WP2017.10.pdf
    File Function: First version, 2017
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fabien Prieur, 2009. "The environmental Kuznets curve in a world of irreversibility," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 40(1), pages 57-90, July.
    2. Martinet, V. & Doyen, L., 2007. "Sustainability of an economy with an exhaustible resource: A viable control approach," Resource and Energy Economics, Elsevier, vol. 29(1), pages 17-39, January.
    3. Tahvonen, Olli & Salo, Seppo, 1996. "Nonconvexities in Optimal Pollution Accumulation," Journal of Environmental Economics and Management, Elsevier, vol. 31(2), pages 160-177, September.
    4. Hediger, Werner, 2009. "Sustainable development with stock pollution," Environment and Development Economics, Cambridge University Press, vol. 14(6), pages 759-780, December.
    5. David Pearce, 1976. "The Limits Of Cost‐Benefit Analysis As A Guide To Environmental Policy," Kyklos, Wiley Blackwell, vol. 29(1), pages 97-112, January.
    6. Tahvonen, Olli & Withagen, Cees, 1996. "Optimality of irreversible pollution accumulation," Journal of Economic Dynamics and Control, Elsevier, vol. 20(9-10), pages 1775-1795.
    7. Toman, Michael A. & Withagen, Cees, 2000. "Accumulative pollution, "clean technology," and policy design," Resource and Energy Economics, Elsevier, vol. 22(4), pages 367-384, October.
    8. Keeler, Emmett & Spence, Michael & Zeckhauser, Richard, 1972. "The optimal control of pollution," Journal of Economic Theory, Elsevier, vol. 4(1), pages 19-34, February.
    9. Leandri, Marc, 2009. "The shadow price of assimilative capacity in optimal flow pollution control," Ecological Economics, Elsevier, vol. 68(4), pages 1020-1031, February.
    10. Fouad Ouardighi & Hassan Benchekroun & Dieter Grass, 2014. "Controlling pollution and environmental absorption capacity," Annals of Operations Research, Springer, vol. 220(1), pages 111-133, September.
    11. Forster, Bruce A., 1975. "Optimal pollution control with a nonconstant exponential rate of decay," Journal of Environmental Economics and Management, Elsevier, vol. 2(1), pages 1-6, September.
    12. Tomiyama, Ken, 1985. "Two-stage optimal control problems and optimality conditions," Journal of Economic Dynamics and Control, Elsevier, vol. 9(3), pages 317-337, November.
    13. C. G. Plourde, 1972. "A Model of Waste Accumulation and Disposal," Canadian Journal of Economics, Canadian Economics Association, vol. 5(1), pages 119-125, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fouad El Ouardighi & Eugene Khmelnitsky & Marc Leandri, 2020. "Production-based pollution versus deforestation: optimal policy with state-independent and-dependent environmental absorption efficiency restoration process," Annals of Operations Research, Springer, vol. 292(1), pages 1-26, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elke Moser & Andrea Seidl & Gustav Feichtinger, 2014. "History-dependence in production-pollution-trade-off models: a multi-stage approach," Annals of Operations Research, Springer, vol. 222(1), pages 457-481, November.
    2. Fouad El Ouardighi & Eugene Khmelnitsky & Marc Leandri, 0. "Production-based pollution versus deforestation: optimal policy with state-independent and-dependent environmental absorption efficiency restoration process," Annals of Operations Research, Springer, vol. 0, pages 1-26.
    3. Fouad El Ouardighi & Eugene Khmelnitsky & Marc Leandri, 2020. "Production-based pollution versus deforestation: optimal policy with state-independent and-dependent environmental absorption efficiency restoration process," Annals of Operations Research, Springer, vol. 292(1), pages 1-26, September.
    4. Fabien Prieur, 2009. "The environmental Kuznets curve in a world of irreversibility," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 40(1), pages 57-90, July.
    5. Leandri, Marc, 2009. "The shadow price of assimilative capacity in optimal flow pollution control," Ecological Economics, Elsevier, vol. 68(4), pages 1020-1031, February.
    6. Fouad Ouardighi & Hassan Benchekroun & Dieter Grass, 2014. "Controlling pollution and environmental absorption capacity," Annals of Operations Research, Springer, vol. 220(1), pages 111-133, September.
    7. Toman, Michael A. & Withagen, Cees, 2000. "Accumulative pollution, "clean technology," and policy design," Resource and Energy Economics, Elsevier, vol. 22(4), pages 367-384, October.
    8. Jean-Pierre Amigues & Michel Moreaux, 2018. "Converting Primary Resources into Useful Energy: The Pollution Ceiling Efficiency Paradox," Annals of Economics and Statistics, GENES, issue 132, pages 5-32.
    9. Amigues, Jean-Pierre & Moreaux, Michel, 2013. "The atmospheric carbon resilience problem: A theoretical analysis," Resource and Energy Economics, Elsevier, vol. 35(4), pages 618-636.
    10. Amigues, Jean-Pierre & Moreaux, Michel, 2012. "Potential Irreversible Catastrophic Shifts of the Assimilative Capacity of the Environment," IDEI Working Papers 697, Institut d'Économie Industrielle (IDEI), Toulouse.
    11. Amigues, Jean-Pierre & Moreaux, Michel, 2016. "Pollution Abatement v.s. Energy Efficiency Improvements," TSE Working Papers 16-626, Toulouse School of Economics (TSE).
    12. Amigues, Jean-Pierre & Moreaux, Michel, 2016. "The Joint Dynamics of the Energy Mix, Land Uses and Energy Efficiency Rates During the Transition Toward the Green Economy," TSE Working Papers 16-625, Toulouse School of Economics (TSE).
    13. Fouad El Ouardighi & Hassan Benchekroun & Dieter Grass, 2016. "Self-regenerating environmental absorption efficiency and the $$\varvec{ soylent~green~scenario}$$ s o y l e n t g r e e n s c e n a r i o," Annals of Operations Research, Springer, vol. 238(1), pages 179-198, March.
    14. Morgane Chevé, 2000. "Irreversibility of Pollution Accumulation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 16(1), pages 93-104, May.
    15. Jean-Pierre Amigues & Michel Moreaux, 2016. "From Primary Resources to Useful Energy: The Pollution Ceiling Efficiency Paradox," Working Papers 2016.10, FAERE - French Association of Environmental and Resource Economists.
    16. Holger Wacker, 1987. "Die optimale Allokation von Arbeit in Abfallbehandlungsaktivitäten," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 123(IV), pages 467-481, December.
    17. Conrad, Klaus, 2001. "The Optimal Path of Energy and CO2 Taxes for Intertemporal Resource Allocation," Discussion Papers 602, Institut fuer Volkswirtschaftslehre und Statistik, Abteilung fuer Volkswirtschaftslehre.
    18. Raouf BOUCEKKINE & Blanca MARTINEZ & José Ramon RUIZ-TAMARIT, 2013. "Optimal sustainable policies under pollution ceiling: the demographic side," LIDAM Discussion Papers IRES 2013028, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    19. Alain Ayong Le Kama & Aude Pommeret & Fabien Prieur, 2014. "Optimal Emission Policy under the Risk of Irreversible Pollution," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 16(6), pages 959-980, December.
    20. Augeraud-Véron, Emmanuelle & Leandri, Marc, 2014. "Optimal pollution control with distributed delays," Journal of Mathematical Economics, Elsevier, vol. 55(C), pages 24-32.

    More about this item

    Keywords

    Optimal pollution control; Climate Change; Ecosystem Services; Assimilative Capacity; Inertia;
    All these keywords.

    JEL classification:

    • D62 - Microeconomics - - Welfare Economics - - - Externalities
    • H23 - Public Economics - - Taxation, Subsidies, and Revenue - - - Externalities; Redistributive Effects; Environmental Taxes and Subsidies
    • Q01 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Sustainable Development
    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fae:wpaper:2017.10. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mireille Chiroleu-Assouline). General contact details of provider: http://edirc.repec.org/data/faereea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.