IDEAS home Printed from https://ideas.repec.org/a/adr/anecst/y2018i132p5-32.html
   My bibliography  Save this article

Converting Primary Resources into Useful Energy: The Pollution Ceiling Efficiency Paradox

Author

Listed:
  • Jean-Pierre Amigues
  • Michel Moreaux

Abstract

We study an economy producing energy services from a polluting fossil fuel and a carbon free renewable resource under a constraint on the admissible atmospheric carbon concentration, equivalently under a constraint on the admissible temperature. The transformation rates of natural primary resources energy into useful energy are costly endogenous variables. Choosing higher efficiency rates requires to bring into operation more sophisticated energy transformation devices, that is more costly ones. We show that, independently of technical progress, along an optimal path, the transformation rate of any exploited resource should increase throughout time, excepted within the period during which the carbon constraint is binding, a phenomenon we call the ‘ceiling paradox’. The effects of technical progress in the fossil fuel and the renewable energy sectors are strongly contrasted. JEL Codes: Q00, Q32, Q43, Q54. Keywords: Energy Efficiency, Carbon Pollution, Non-Renewable Resources, Renewable Resources.

Suggested Citation

  • Jean-Pierre Amigues & Michel Moreaux, 2018. "Converting Primary Resources into Useful Energy: The Pollution Ceiling Efficiency Paradox," Annals of Economics and Statistics, GENES, issue 132, pages 5-32.
  • Handle: RePEc:adr:anecst:y:2018:i:132:p:5-32
    DOI: 10.15609/annaeconstat2009.132.0005
    as

    Download full text from publisher

    File URL: https://www.jstor.org/stable/10.15609/annaeconstat2009.132.0005
    Download Restriction: no

    File URL: https://libkey.io/10.15609/annaeconstat2009.132.0005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. repec:hrv:faseco:33373343 is not listed on IDEAS
    2. Ujjayant Chakravorty & Michel Moreaux & Mabel Tidball, 2008. "Ordering the Extraction of Polluting Nonrenewable Resources," American Economic Review, American Economic Association, vol. 98(3), pages 1128-1144, June.
    3. Hassler, John & Krusell, Per & Olovsson, Conny, 2012. "Energy-Saving Technical Change," CEPR Discussion Papers 9177, C.E.P.R. Discussion Papers.
    4. Geoffrey Heal, 1976. "The Relationship Between Price and Extraction Cost for a Resource with a Backstop Technology," Bell Journal of Economics, The RAND Corporation, vol. 7(2), pages 371-378, Autumn.
    5. Brookes, L. G., 1978. "Energy policy, the energy price fallacy and the role of nuclear energy in the UK," Energy Policy, Elsevier, vol. 6(2), pages 94-106, June.
    6. Steve Sorrell, 2014. "Energy Substitution, Technical Change and Rebound Effects," Energies, MDPI, Open Access Journal, vol. 7(5), pages 1-24, April.
    7. Tahvonen, Olli & Withagen, Cees, 1996. "Optimality of irreversible pollution accumulation," Journal of Economic Dynamics and Control, Elsevier, vol. 20(9-10), pages 1775-1795.
    8. Charles F. Mason & Neil Wilmot, 2015. "Modeling Damages in Climate Policy Models: Temperature-Based or Carbon-Based?," CESifo Working Paper Series 5287, CESifo.
    9. Smulders, Sjak & Tsur, Yacov & Zemel, Amos, 2012. "Announcing climate policy: Can a green paradox arise without scarcity?," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 364-376.
    10. Chakravorty, Ujjayant & Magne, Bertrand & Moreaux, Michel, 2006. "A Hotelling model with a ceiling on the stock of pollution," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2875-2904, December.
    11. Withagen, Cees, 1994. "Pollution and exhaustibility of fossil fuels," Resource and Energy Economics, Elsevier, vol. 16(3), pages 235-242, August.
    12. Gaudet, Gerard & Lasserre, Pierre, 1988. "On comparing monopoly and competition in exhaustible resource exploitation," Journal of Environmental Economics and Management, Elsevier, vol. 15(4), pages 412-418, December.
    13. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801, February.
    14. Farzin, Y. H., 1996. "Optimal pricing of environmental and natural resource use with stock externalities," Journal of Public Economics, Elsevier, vol. 62(1-2), pages 31-57, October.
    15. Toman, Michael A. & Withagen, Cees, 2000. "Accumulative pollution, "clean technology," and policy design," Resource and Energy Economics, Elsevier, vol. 22(4), pages 367-384, October.
    16. Frederick Ploeg & Cees Withagen, 2014. "Growth, Renewables, And The Optimal Carbon Tax," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55, pages 283-311, February.
    17. J. Daniel Khazzoom, 1980. "Economic Implications of Mandated Efficiency in Standards for Household Appliances," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 21-40.
    18. Mikhail Golosov & John Hassler & Per Krusell & Aleh Tsyvinski, 2014. "Optimal Taxes on Fossil Fuel in General Equilibrium," Econometrica, Econometric Society, vol. 82(1), pages 41-88, January.
    19. Farzin, Y H & Tahvonen, O, 1996. "Global Carbon Cycle and the Optimal Time Path of a Carbon Tax," Oxford Economic Papers, Oxford University Press, vol. 48(4), pages 515-536, October.
    20. Tahvonen, Olli & Salo, Seppo, 1996. "Nonconvexities in Optimal Pollution Accumulation," Journal of Environmental Economics and Management, Elsevier, vol. 31(2), pages 160-177, September.
    21. Donald A. Hanson, 1980. "Increasing Extraction Costs and Resource Prices: Some Further Results," Bell Journal of Economics, The RAND Corporation, vol. 11(1), pages 335-342, Spring.
    22. Brookes, Leonard, 2000. "Energy efficiency fallacies revisited," Energy Policy, Elsevier, vol. 28(6-7), pages 355-366, June.
    23. Forster, Bruce A., 1975. "Optimal pollution control with a nonconstant exponential rate of decay," Journal of Environmental Economics and Management, Elsevier, vol. 2(1), pages 1-6, September.
    24. Tahvonen, Olli & Kuuluvainen, Jari, 1991. "Optimal growth with renewable resources and pollution," European Economic Review, Elsevier, vol. 35(2-3), pages 650-661, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amigues, Jean-Pierre & Moreaux, Michel, 2018. "Competing Land Uses and Fossil Fuel, Optimal Energy Conversion Rates During the Transition Toward a Green Economy Under a Pollution Stock Constraint," TSE Working Papers 18-981, Toulouse School of Economics (TSE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-Pierre Amigues & Michel Moreaux, 2016. "From Primary Resources to Useful Energy: The Pollution Ceiling Efficiency Paradox," Working Papers 2016.10, FAERE - French Association of Environmental and Resource Economists.
    2. Amigues, Jean-Pierre & Moreaux, Michel, 2016. "Pollution Abatement v.s. Energy Efficiency Improvements," TSE Working Papers 16-626, Toulouse School of Economics (TSE).
    3. Amigues, Jean-Pierre & Moreaux, Michel, 2019. "Energy Conversion Rate Improvements, Pollution Abatement Efforts and Energy Mix: The Transition toward the Green Economy under a Pollution Stock Constraint," TSE Working Papers 19-994, Toulouse School of Economics (TSE).
    4. Amigues, Jean-Pierre & Moreaux, Michel, 2016. "The Joint Dynamics of the Energy Mix, Land Uses and Energy Efficiency Rates During the Transition Toward the Green Economy," TSE Working Papers 16-625, Toulouse School of Economics (TSE).
    5. Amigues, Jean-Pierre & Moreaux, Michel, 2018. "Competing Land Uses and Fossil Fuel, Optimal Energy Conversion Rates During the Transition Toward a Green Economy Under a Pollution Stock Constraint," TSE Working Papers 18-981, Toulouse School of Economics (TSE).
    6. Amigues, Jean-Pierre & Moreaux, Michel, 2013. "The atmospheric carbon resilience problem: A theoretical analysis," Resource and Energy Economics, Elsevier, vol. 35(4), pages 618-636.
    7. VARDAR, N. Baris, 2014. "Optimal energy transition and taxation of non-renewable resources," LIDAM Discussion Papers CORE 2014021, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Prieur, Fabien & Tidball, Mabel & Withagen, Cees, 2013. "Optimal emission-extraction policy in a world of scarcity and irreversibility," Resource and Energy Economics, Elsevier, vol. 35(4), pages 637-658.
    9. Prudence Dato, 2017. "Energy Transition Under Irreversibility: A Two-Sector Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(3), pages 797-820, November.
    10. Moreaux, Michel & Withagen, Cees, 2015. "Optimal abatement of carbon emission flows," Journal of Environmental Economics and Management, Elsevier, vol. 74(C), pages 55-70.
    11. Christian Beermann, 2015. "Climate Policy and the Intertemporal Supply of Fossil Resources," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 62.
    12. Frederick van der Ploeg & Cees Withagen, 2015. "Global Warming and the Green Paradox: A Review of Adverse Effects of Climate Policies," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 9(2), pages 285-303.
    13. Sandal, Leif K. & Steinshamn, Stein Ivar & Grafton, R. Quentin, 2003. ""More is less": the tax effects of ignoring flow externalities," Resource and Energy Economics, Elsevier, vol. 25(3), pages 239-254, August.
    14. Armon Rezai & Frederick van der Ploeg & Cees Withagen, 2012. "The Optimal Carbon Tax and Economic Growth: Additive versus Multiplicative Damages," CEEES Paper Series CE3S-05/12, European University at St. Petersburg, Department of Economics.
    15. Rick Van der Ploeg & Armon Rezai & Cees Withagen, 2012. "Economic Growth and the Social Cost of Carbon: Additive versus Multiplicative Damages," OxCarre Working Papers 093, Oxford Centre for the Analysis of Resource Rich Economies, University of Oxford.
    16. Andrade de Sá, Saraly & Daubanes, Julien, 2016. "Limit pricing and the (in)effectiveness of the carbon tax," Journal of Public Economics, Elsevier, vol. 139(C), pages 28-39.
    17. Verchère, Alban, 2011. "Le développement durable en question : analyses économiques autour d’un improbable compromis entre acceptions optimiste et pessimiste du rapport de l’Homme à la Nature," L'Actualité Economique, Société Canadienne de Science Economique, vol. 87(3), pages 337-403, septembre.
    18. van der Werf, Edwin & Di Maria, Corrado, 2012. "Imperfect Environmental Policy and Polluting Emissions: The Green Paradox and Beyond," International Review of Environmental and Resource Economics, now publishers, vol. 6(2), pages 153-194, March.
    19. Amigues, Jean-Pierre & Moreaux, Michel, 2013. "Optimal growth under a climate constraint," TSE Working Papers 13-436, Toulouse School of Economics (TSE).
    20. Smulders, Sjak & Withagen, Cees, 2012. "Green growth -- lessons from growth theory," Policy Research Working Paper Series 6230, The World Bank.

    More about this item

    Keywords

    Energy Efficiency; Carbon Pollution; Non-Renewable Resources; Renewable Resources.;
    All these keywords.

    JEL classification:

    • Q00 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - General
    • Q32 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Exhaustible Resources and Economic Development
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adr:anecst:y:2018:i:132:p:5-32. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/ensaefr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Secretariat General or Laurent Linnemer (email available below). General contact details of provider: https://edirc.repec.org/data/ensaefr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.