IDEAS home Printed from
   My bibliography  Save this paper

Risk Neutral Forecasting


  • Skouras, S.


This paper develops statistical and computational tools for modelling returns forecasts to be used by a risk neutral investor. Any forecast with the same sign as the conditional mean optimises the loss function derived from this agents' decision problem, so the class of optimal predictors is rather broad.

Suggested Citation

  • Skouras, S., 1998. "Risk Neutral Forecasting," Economics Working Papers eco98/40, European University Institute.
  • Handle: RePEc:eui:euiwps:eco98/40

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    1. Hylleberg, Svend & Jorgensen, Clara & Sorensen, Nils Karl, 1993. "Seasonality in Macroeconomic Time Series," Empirical Economics, Springer, vol. 18(2), pages 321-335.
    2. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    3. Hylleberg, S. & Engle, R. F. & Granger, C. W. J. & Yoo, B. S., 1990. "Seasonal integration and cointegration," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 215-238.
    4. Gil-Alana, L. A. & Robinson, P. M., 1997. "Testing of unit root and other nonstationary hypotheses in macroeconomic time series," Journal of Econometrics, Elsevier, vol. 80(2), pages 241-268, October.
    5. Canova, Fabio & Hansen, Bruce E, 1995. "Are Seasonal Patterns Constant over Time? A Test for Seasonal Stability," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 237-252, July.
    6. Engle, R. F. & Granger, C. W. J. & Hylleberg, S. & Lee, H. S., 1993. "The Japanese consumption function," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 275-298.
    7. Ray, Bonnie K., 1993. "Long-range forecasting of IBM product revenues using a seasonal fractionally differenced ARMA model," International Journal of Forecasting, Elsevier, vol. 9(2), pages 255-269, August.
    8. Carlin, J. B. & Dempster, A. P. & Jonas, A. B., 1985. "On models and methods for Bayesian time series analysis," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 67-90.
    9. Ghysels, Eric & Lee, Hahn S. & Noh, Jaesum, 1994. "Testing for unit roots in seasonal time series : Some theoretical extensions and a Monte Carlo investigation," Journal of Econometrics, Elsevier, vol. 62(2), pages 415-442, June.
    10. Osborn, Denise R., 1993. "Seasonal cointegration," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 299-303.
    11. Hylleberg, Svend, 1995. "Tests for seasonal unit roots general to specific or specific to general?," Journal of Econometrics, Elsevier, vol. 69(1), pages 5-25, September.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Fong, Wai Mun & Yong, Lawrence H. M., 2005. "Chasing trends: recursive moving average trading rules and internet stocks," Journal of Empirical Finance, Elsevier, vol. 12(1), pages 43-76, January.
    2. Dewachter, Hans & Lyrio, Marco, 2006. "The cost of technical trading rules in the Forex market: A utility-based evaluation," Journal of International Money and Finance, Elsevier, vol. 25(7), pages 1072-1089, November.
    3. Skouras, Spyros, 2003. "An algorithm for computing estimators that optimize step functions," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 349-361, March.

    More about this item



    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G19 - Financial Economics - - General Financial Markets - - - Other


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eui:euiwps:eco98/40. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Julia Valerio). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.