IDEAS home Printed from
   My bibliography  Save this paper

Risk Neutral Forecasting


  • Spyros Skouras

    (University of Cambridge Gonville and Caius College)


Any mapping that has the same sign as the conditional mean of returns is a risk neutral investor's best predictor so it may be difficult to estimate the conditional mean yet easy to estimate a `risk neutral best predictor'. An asymptotically consistent estimator for risk neutral best predictors is proposed and is characterised both analytically and using simulations. Our results suggest that there are broad circumstances in which an investor should prefer forecasts based on this estimator to those generated by maximum likelihood estimation of the conditional mean. To facilitate the estimator's computation, a tailor-made algorithm is proposed and its properties are investigated.The decision problem we choose to focus on leads to the development of statistical and computational methods which can be applied to the estimation of `investment rules' and of `economically valuable' forecasting models.

Suggested Citation

  • Spyros Skouras, 2000. "Risk Neutral Forecasting," Computing in Economics and Finance 2000 117, Society for Computational Economics.
  • Handle: RePEc:sce:scecf0:117

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    1. Golan, Amos & Judge, George G. & Miller, Douglas, 1996. "Maximum Entropy Econometrics," Staff General Research Papers Archive 1488, Iowa State University, Department of Economics.
    2. Granger, C. W. J. & Newbold, Paul, 1986. "Forecasting Economic Time Series," Elsevier Monographs, Elsevier, edition 2, number 9780122951831 edited by Shell, Karl.
    3. Christoffersen, Peter F & Diebold, Francis X, 1996. "Further Results on Forecasting and Model Selection under Asymmetric Loss," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 561-571, Sept.-Oct.
    4. Perron, Pierre, 1997. "Further evidence on breaking trend functions in macroeconomic variables," Journal of Econometrics, Elsevier, vol. 80(2), pages 355-385, October.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Fong, Wai Mun & Yong, Lawrence H. M., 2005. "Chasing trends: recursive moving average trading rules and internet stocks," Journal of Empirical Finance, Elsevier, vol. 12(1), pages 43-76, January.
    2. Dewachter, Hans & Lyrio, Marco, 2006. "The cost of technical trading rules in the Forex market: A utility-based evaluation," Journal of International Money and Finance, Elsevier, vol. 25(7), pages 1072-1089, November.
    3. Skouras, Spyros, 2003. "An algorithm for computing estimators that optimize step functions," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 349-361, March.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf0:117. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.