IDEAS home Printed from https://ideas.repec.org/p/enp/wpaper/eprg1909.html
   My bibliography  Save this paper

Production efficiency of nodal and zonal pricing in imperfectly competitive electricity markets

Author

Listed:
  • Mahir Sarfati

    (KTH Royal Institute of Technology, Sweden)

  • Mahammad Reza Hesamzadeh

    (KTH Royal Institute of Technology, Sweden)

  • Par Holmberg

    (Research Institute of Industrial Economics (IFN), Sweden)

Abstract

Electricity markets employ different congestion management methods to handle the limited transmission capacity of the power system. This paper compares production efficiency and other aspects of nodal and zonal pricing. We consider two types of zonal pricing: zonal pricing with Available Transmission Capacity (ATC) and zonal pricing with Flow-Based Market Coupling (FBMC).We develop a mathematical model to study the imperfect competition under zonal pricing with FBMC. Zonal pricing with FBMC is employed in two stages, a day-ahead market stage and a re-dispatch stage. We show that the optimality conditions and market clearing conditions can be reformulated as a mixed integer linear program (MILP), which is straightforward to implement. Zonal pricing with ATC and nodal pricing is used as our benchmarks. The imperfect competition under zonal pricing with ATC and nodal pricing are also formulated as MILP models. All MILP models are demonstrated on 6-node and the modified IEEE 24-node systems. Our numerical results show that the zonal pricing with ATC results in large production inefficiencies due to the incdec-game. Improving the representation of the transmission network as in the zonal pricing with FBMC mitigates the inc-dec game.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Mahir Sarfati & Mahammad Reza Hesamzadeh & Par Holmberg, 2019. "Production efficiency of nodal and zonal pricing in imperfectly competitive electricity markets," Working Papers EPRG1909, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
  • Handle: RePEc:enp:wpaper:eprg1909
    as

    Download full text from publisher

    File URL: https://www.jbs.cam.ac.uk/wp-content/uploads/2023/12/eprg-wp1909.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dijk, Justin & Willems, Bert, 2011. "The effect of counter-trading on competition in electricity markets," Energy Policy, Elsevier, vol. 39(3), pages 1764-1773, March.
    2. Mette Bjorndal & Kurt Jornsten, 2001. "Zonal Pricing in a Deregulated Electricity Market," The Energy Journal, , vol. 22(1), pages 51-73, January.
    3. Chao, Hung-Po & Peck, Stephen C, 1998. "Reliability Management in Competitive Electricity Markets," Journal of Regulatory Economics, Springer, vol. 14(2), pages 189-200, September.
    4. RUIZ, Carlos & CONEJO, Antonio J. & SMEERS, Yves, 2012. "Equilibria in an oligopolistic electricity pool with stepwise offer curves," LIDAM Reprints CORE 2395, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Sarfati, Mahir & Hesamzadeh, Mohammad Reza & Holmberg, Pär, 2018. "Increase-Decrease Game under Imperfect Competition in Two-stage Zonal Power Markets –​ Part II: Solution Algorithm," Working Paper Series 1254, Research Institute of Industrial Economics.
    6. Neuhoff, Karsten & Boyd, Rodney, 2011. "Technical Aspects of Nodal Pricing," EconStor Research Reports 65877, ZBW - Leibniz Information Centre for Economics.
    7. Grimm, Veronika & Martin, Alexander & Schmidt, Martin & Weibelzahl, Martin & Zöttl, Gregor, 2016. "Transmission and generation investment in electricity markets: The effects of market splitting and network fee regimes," European Journal of Operational Research, Elsevier, vol. 254(2), pages 493-509.
    8. M. Bjørndal & K. Jørnsten & V. Pignon, 2003. "Congestion management in the Nordic power market - counter purchases and zonal pricing," Competition and Regulation in Network Industries, Intersentia, vol. 4(3), pages 271-293, September.
    9. M. Sarfati & M.R. Hesamzadeh & P. Holmberg, 2018. "Increase-Decrease Game under Imperfect Competition in Two-stage Zonal Power Markets – Part II: Solution Algorithm," Working Papers EPRG 1838, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    10. Karsten Neuhoff & Benjamin F. Hobbs & David Newbery, 2011. "Congestion Management in European Power Networks: Criteria to Assess the Available Options," Discussion Papers of DIW Berlin 1161, DIW Berlin, German Institute for Economic Research.
    11. Grimm, Veronika & Martin, Alexander & Weibelzahl, Martin & Zöttl, Gregor, 2016. "On the long run effects of market splitting: Why more price zones might decrease welfare," Energy Policy, Elsevier, vol. 94(C), pages 453-467.
    12. Sarfatia, M. & M., Hesamzadeha. & Holmberg, P., 2018. "Increase-Decrease Game under Imperfect Competition in Two-stage Zonal Power Markets Part I: Concept Analysis," Cambridge Working Papers in Economics 1869, Faculty of Economics, University of Cambridge.
    13. Weibelzahl, Martin & Märtz, Alexandra, 2018. "On the effects of storage facilities on optimal zonal pricing in electricity markets," Energy Policy, Elsevier, vol. 113(C), pages 778-794.
    14. Huppmann, Daniel & Siddiqui, Sauleh, 2018. "An exact solution method for binary equilibrium problems with compensation and the power market uplift problem," European Journal of Operational Research, Elsevier, vol. 266(2), pages 622-638.
    15. Pär Holmberg and Ewa Lazarczyk, 2015. "Comparison of congestion management techniques: Nodal, zonal and discriminatory pricing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    16. von der Fehr, Nils-Henrik Morch & Harbord, David, 1993. "Spot Market Competition in the UK Electricity Industry," Economic Journal, Royal Economic Society, vol. 103(418), pages 531-546, May.
    17. Hesamzadeh, M. & Holmberg, P. & Sarfati, M., 2018. "Simulation and Evaluation of Zonal Electricity Market Designs," Cambridge Working Papers in Economics 1829, Faculty of Economics, University of Cambridge.
    18. Sarfati, Mahir & Hesamzadeh, Mohammad Reza & Holmberg, Pär, 2018. "Increase-Decrease Game under Imperfect Competition in Two-stage Zonal Power Markets –​ Part I: Concept Analysis," Working Paper Series 1253, Research Institute of Industrial Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Höckner, Jonas & Voswinkel, Simon & Weber, Christoph, 2020. "Market distortions in flexibility markets caused by renewable subsidies – The case for side payments," Energy Policy, Elsevier, vol. 137(C).
    2. Anna Pechan & Christine Brandstätt & Gert Brunekreeft & Martin Palovic, "undated". "Risks and incentives for gaming in electricity redispatch markets," Bremen Energy Working Papers 0043, Bremen Energy Research.
    3. Osińska, Magdalena & Kyzym, Mykola & Khaustova, Victoriia & Ilyash, Olha & Salashenko, Tetiana, 2022. "Does the Ukrainian electricity market correspond to the european model?," Utilities Policy, Elsevier, vol. 79(C).
    4. Zhou, Wei & Gu, Ruitao & Lu, Shuai, 2020. "Penetrating the real performance of SSE STAR enterprises: A double-market investigation," Finance Research Letters, Elsevier, vol. 37(C).
    5. Attar, Mehdi & Repo, Sami & Mann, Pierre, 2022. "Congestion management market design- Approach for the Nordics and Central Europe," Applied Energy, Elsevier, vol. 313(C).
    6. Ehrhart, Karl-Martin & Eicke, Anselm & Hirth, Lion & Ocker, Fabian & Ott, Marion & Schlecht, Ingmar & Wang, Runxi, 2022. "Congestion management games in electricity markets," ZEW Discussion Papers 22-060, ZEW - Leibniz Centre for European Economic Research.
    7. Erik Heilmann & Nikolai Klempp & Kai Hufendiek & Heike Wetzel, 2022. "Long-term Contracts for Network-supportive Flexibility in Local Flexibility Markets," MAGKS Papers on Economics 202224, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    8. Piotr F. Borowski, 2020. "Zonal and Nodal Models of Energy Market in European Union," Energies, MDPI, vol. 13(16), pages 1-21, August.
    9. Jahns, Christopher & Stein, Tobias & Höckner, Jonas & Weber, Christoph, 2023. "Prevention of strategic behaviour in local flexibility markets using market monitoring – Concept, application example and limitations," Energy Policy, Elsevier, vol. 174(C).
    10. Samar Fatima & Verner Püvi & Ammar Arshad & Mahdi Pourakbari-Kasmaei & Matti Lehtonen, 2021. "Comparison of Economical and Technical Photovoltaic Hosting Capacity Limits in Distribution Networks," Energies, MDPI, vol. 14(9), pages 1-23, April.
    11. Ali Darudi & Hannes Weigt, 2024. "Review and Assessment of Decarbonized Future Electricity Markets," Energies, MDPI, vol. 17(18), pages 1-38, September.
    12. Jun Dong & Dongran Liu & Xihao Dou & Bo Li & Shiyao Lv & Yuzheng Jiang & Tongtao Ma, 2021. "Key Issues and Technical Applications in the Study of Power Markets as the System Adapts to the New Power System in China," Sustainability, MDPI, vol. 13(23), pages 1-29, December.
    13. M. Y. Jumba & Y. S. Haruna & U. O. Aliyu & A. L. Amao, 2024. "Application of Games Theory in Modelling of Nigerian Electricity Market," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 11(5), pages 1129-1140, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Holmberg, Pär & Tangerås, Thomas & Ahlqvist, Victor, 2018. "Central- versus Self-Dispatch in Electricity Markets," Working Paper Series 1257, Research Institute of Industrial Economics, revised 27 Mar 2019.
    2. Martin Weibelzahl & Alexandra Märtz, 2020. "Optimal storage and transmission investments in a bilevel electricity market model," Annals of Operations Research, Springer, vol. 287(2), pages 911-940, April.
    3. Hesamzadeh, M. & Holmberg, P. & Sarfati, M., 2018. "Simulation and Evaluation of Zonal Electricity Market Designs," Cambridge Working Papers in Economics 1829, Faculty of Economics, University of Cambridge.
    4. Ambrosius, M. & Egerer, J. & Grimm, V. & Weijde, A.H. van der, 2020. "Uncertain bidding zone configurations: The role of expectations for transmission and generation capacity expansion," European Journal of Operational Research, Elsevier, vol. 285(1), pages 343-359.
    5. Grimm, Veronika & Rückel, Bastian & Sölch, Christian & Zöttl, Gregor, 2021. "The impact of market design on transmission and generation investment in electricity markets," Energy Economics, Elsevier, vol. 93(C).
    6. Fridgen, Gilbert & Michaelis, Anne & Rinck, Maximilian & Schöpf, Michael & Weibelzahl, Martin, 2020. "The search for the perfect match: Aligning power-trading products to the energy transition," Energy Policy, Elsevier, vol. 144(C).
    7. Blázquez De Paz, Mario, 2017. "Production or Transmission Investments? A Comparative Analysis," Working Paper Series 1158, Research Institute of Industrial Economics.
    8. Erik Heilmann & Nikolai Klempp & Kai Hufendiek & Heike Wetzel, 2022. "Long-term Contracts for Network-supportive Flexibility in Local Flexibility Markets," MAGKS Papers on Economics 202224, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    9. Rövekamp, Patrick & Schöpf, Michael & Wagon, Felix & Weibelzahl, Martin, 2023. "For better or for worse? On the economic and ecologic value of industrial demand side management in constrained electricity grids," Energy Policy, Elsevier, vol. 183(C).
    10. Felten, Björn & Osinski, Paul & Felling, Tim & Weber, Christoph, 2021. "The flow-based market coupling domain - Why we can't get it right," Utilities Policy, Elsevier, vol. 70(C).
    11. Sarfati, Mahir & Hesamzadeh, Mohammad Reza & Holmberg, Pär, 2018. "Increase-Decrease Game under Imperfect Competition in Two-stage Zonal Power Markets –​ Part I: Concept Analysis," Working Paper Series 1253, Research Institute of Industrial Economics.
    12. M. Sarfati & M.R. Hesamzadeh & P. Holmberg, 2018. "Increase-Decrease Game under Imperfect Competition in Two-stage Zonal Power Markets – Part I: Concept Analysis," Working Papers EPRG 1837, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    13. Jonas Egerer & Jens Weibezahn & Hauke Hermann, 2015. "Two Price Zones for the German Electricity Market: Market Implications and Distributional Effects," Discussion Papers of DIW Berlin 1451, DIW Berlin, German Institute for Economic Research.
    14. Heffron, Raphael J. & Körner, Marc-Fabian & Sumarno, Theresia & Wagner, Jonathan & Weibelzahl, Martin & Fridgen, Gilbert, 2022. "How different electricity pricing systems affect the energy trilemma: Assessing Indonesia's electricity market transition," Energy Economics, Elsevier, vol. 107(C).
    15. Ruderer, Dominik & Zöttl, Gregor, 2018. "Transmission pricing and investment incentives," Utilities Policy, Elsevier, vol. 55(C), pages 14-30.
    16. Höckner, Jonas & Voswinkel, Simon & Weber, Christoph, 2020. "Market distortions in flexibility markets caused by renewable subsidies – The case for side payments," Energy Policy, Elsevier, vol. 137(C).
    17. Bjørndal, Endre & Bjørndal, Mette Helene & Coniglio, Stefano & Körner, Marc-Fabian & Leinauer, Christina & Weibelzahl, Martin, 2023. "Energy storage operation and electricity market design: On the market power of monopolistic storage operators," European Journal of Operational Research, Elsevier, vol. 307(2), pages 887-909.
    18. Ambrosius, Mirjam & Grimm, Veronika & Kleinert, Thomas & Liers, Frauke & Schmidt, Martin & Zöttl, Gregor, 2020. "Endogenous price zones and investment incentives in electricity markets: An application of multilevel optimization with graph partitioning," Energy Economics, Elsevier, vol. 92(C).
    19. Blázquez de Paz, Mario, 2019. "Redispatch in Zonal Pricing Electricity Markets," Working Paper Series 1278, Research Institute of Industrial Economics.
    20. Lang, Lukas Maximilian & Dallinger, Bettina & Lettner, Georg, 2020. "The meaning of flow-based market coupling on redispatch measures in Austria," Energy Policy, Elsevier, vol. 136(C).

    More about this item

    Keywords

    Congestion management; Zonal pricing; Flow-based market coupling;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • D43 - Microeconomics - - Market Structure, Pricing, and Design - - - Oligopoly and Other Forms of Market Imperfection
    • L13 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Oligopoly and Other Imperfect Markets
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:enp:wpaper:eprg1909. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ruth Newman (email available below). General contact details of provider: https://edirc.repec.org/data/jicamuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.