IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/114114.html
   My bibliography  Save this paper

A Lagrangian Relaxation Approach Based on a Time-Space-State Network for Railway Crew Scheduling

Author

Listed:
  • Y. Wang (Ying)
  • Z. Shang (Zheming)
  • Huisman, D.
  • D'Ariano, A.
  • J.C. Zhang (Jinchuan)

Abstract

The crew scheduling problem is an important and difficult problem in railway crew management. In this paper, we focus on the railway crew scheduling problem with time window constraints caused by meal break rules. To solve this optimization problem, a solution method is proposed based on a time-space-state network and Lagrangian relaxation. In this method, the "hard constraints" corresponding to the crew rules are described as the state of vertices in the time-space-state network. Based on the network, this problem is modeled as a network flow model, referred to as an initial model. To break the symmetry and improve the strength of the formulation, five valid inequalities are added. To solve the problem, we relax the coupling constraints by Lagrangian relaxation. The resulting subproblems are shortest path problems in the time-space-state networks. We propose a Lagrangian heuristic to find a feasible solution. Finally, the solution method is tested on real-world instances from an intercity rail line and a regional railway network in China. We discuss the effects of additional valid inequalities and the effects of different length of meal time windows.

Suggested Citation

  • Y. Wang (Ying) & Z. Shang (Zheming) & Huisman, D. & D'Ariano, A. & J.C. Zhang (Jinchuan), 2018. "A Lagrangian Relaxation Approach Based on a Time-Space-State Network for Railway Crew Scheduling," Econometric Institute Research Papers EI2018-45, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:114114
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/114114/EI2018-45.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Atoosa Kasirzadeh & Mohammed Saddoune & François Soumis, 2017. "Airline crew scheduling: models, algorithms, and data sets," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(2), pages 111-137, June.
    2. Helena R. Lourenço & José P. Paixão & Rita Portugal, 2001. "Multiobjective Metaheuristics for the Bus Driver Scheduling Problem," Transportation Science, INFORMS, vol. 35(3), pages 331-343, August.
    3. J. P. Arabeyre & J. Fearnley & F. C. Steiger & W. Teather, 1969. "The Airline Crew Scheduling Problem: A Survey," Transportation Science, INFORMS, vol. 3(2), pages 140-163, May.
    4. Martin Desrochers & François Soumis, 1989. "A Column Generation Approach to the Urban Transit Crew Scheduling Problem," Transportation Science, INFORMS, vol. 23(1), pages 1-13, February.
    5. Dennis Huisman & Richard Freling & Albert P. M. Wagelmans, 2005. "Multiple-Depot Integrated Vehicle and Crew Scheduling," Transportation Science, INFORMS, vol. 39(4), pages 491-502, November.
    6. Ernst, A. T. & Jiang, H. & Krishnamoorthy, M. & Sier, D., 2004. "Staff scheduling and rostering: A review of applications, methods and models," European Journal of Operational Research, Elsevier, vol. 153(1), pages 3-27, February.
    7. Erwin Abbink & Dennis Huisman & Leo Kroon, 2018. "Railway Crew Management," International Series in Operations Research & Management Science, in: Ralf Borndörfer & Torsten Klug & Leonardo Lamorgese & Carlo Mannino & Markus Reuther & Thomas Schlec (ed.), Handbook of Optimization in the Railway Industry, chapter 0, pages 243-264, Springer.
    8. Sherali, Hanif D. & Bish, Ebru K. & Zhu, Xiaomei, 2006. "Airline fleet assignment concepts, models, and algorithms," European Journal of Operational Research, Elsevier, vol. 172(1), pages 1-30, July.
    9. Cynthia Barnhart & Peter Belobaba & Amedeo R. Odoni, 2003. "Applications of Operations Research in the Air Transport Industry," Transportation Science, INFORMS, vol. 37(4), pages 368-391, November.
    10. Freling, R. & Lentink, R.M. & Odijk, M.A., 2000. "Scheduling train crews: a case study for the Dutch Railways," Econometric Institute Research Papers EI 2000-17/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    11. Huisman, Dennis, 2007. "A column generation approach for the rail crew re-scheduling problem," European Journal of Operational Research, Elsevier, vol. 180(1), pages 163-173, July.
    12. Abbink, E.J.W. & Albino, L. & Dollevoet, T.A.B. & Huisman, D. & Roussado, J. & Saldanha, R.L., 2010. "Solving Large Scale Crew Scheduling Problems in Practice," Econometric Institute Research Papers EI 2010-63, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    13. Mahmoudi, Monirehalsadat & Zhou, Xuesong, 2016. "Finding optimal solutions for vehicle routing problem with pickup and delivery services with time windows: A dynamic programming approach based on state–space–time network representations," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 19-42.
    14. Vaidyanathan, Balachandran, 2007. "Multi-Commodity Network Flow Based Approaches for the Railroad Crew Scheduling Problem," 48th Annual Transportation Research Forum, Boston, Massachusetts, March 15-17, 2007 207928, Transportation Research Forum.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heil, Julia & Hoffmann, Kirsten & Buscher, Udo, 2020. "Railway crew scheduling: Models, methods and applications," European Journal of Operational Research, Elsevier, vol. 283(2), pages 405-425.
    2. F. Zeynep Sargut & Caner Altuntaş & Dilek Cetin Tulazoğlu, 2017. "Multi-objective integrated acyclic crew rostering and vehicle assignment problem in public bus transportation," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1071-1096, October.
    3. Perumal, Shyam S.G. & Lusby, Richard M. & Larsen, Jesper, 2022. "Electric bus planning & scheduling: A review of related problems and methodologies," European Journal of Operational Research, Elsevier, vol. 301(2), pages 395-413.
    4. Shyam S. G. Perumal & Jesper Larsen & Richard M. Lusby & Morten Riis & Tue R. L. Christensen, 2022. "A column generation approach for the driver scheduling problem with staff cars," Public Transport, Springer, vol. 14(3), pages 705-738, October.
    5. Bach, L. & Dollevoet, T.A.B. & Huisman, D., 2014. "Integrating Timetabling and Crew," Econometric Institute Research Papers EI 2014-03, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    6. Lukas Bach & Twan Dollevoet & Dennis Huisman, 2016. "Integrating Timetabling and Crew Scheduling at a Freight Railway Operator," Transportation Science, INFORMS, vol. 50(3), pages 878-891, August.
    7. Perumal, Shyam S.G. & Larsen, Jesper & Lusby, Richard M. & Riis, Morten & Sørensen, Kasper S., 2019. "A matheuristic for the driver scheduling problem with staff cars," European Journal of Operational Research, Elsevier, vol. 275(1), pages 280-294.
    8. Okan Örsan Özener & Melda Örmeci Matoğlu & Güneş Erdoğan & Mohamed Haouari & Hasan Sözer, 2017. "Solving a large-scale integrated fleet assignment and crew pairing problem," Annals of Operations Research, Springer, vol. 253(1), pages 477-500, June.
    9. Breugem, T. & van Rossum, B.T.C. & Dollevoet, T. & Huisman, D., 2022. "A column generation approach for the integrated crew re-planning problem," Omega, Elsevier, vol. 107(C).
    10. Şahin, Güvenç & Yüceoğlu, Birol, 2011. "Tactical crew planning in railways," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1221-1243.
    11. Ciancio, Claudio & Laganà, Demetrio & Musmanno, Roberto & Santoro, Francesco, 2018. "An integrated algorithm for shift scheduling problems for local public transport companies," Omega, Elsevier, vol. 75(C), pages 139-153.
    12. Maenhout, Broos & Vanhoucke, Mario, 2010. "A hybrid scatter search heuristic for personalized crew rostering in the airline industry," European Journal of Operational Research, Elsevier, vol. 206(1), pages 155-167, October.
    13. João P. Pita & Cynthia Barnhart & António P. Antunes, 2013. "Integrated Flight Scheduling and Fleet Assignment Under Airport Congestion," Transportation Science, INFORMS, vol. 47(4), pages 477-492, November.
    14. Khaled, Oumaima & Minoux, Michel & Mousseau, Vincent & Michel, Stéphane & Ceugniet, Xavier, 2018. "A multi-criteria repair/recovery framework for the tail assignment problem in airlines," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 137-151.
    15. Guo, Yufeng & Mellouli, Taieb & Suhl, Leena & Thiel, Markus P., 2006. "A partially integrated airline crew scheduling approach with time-dependent crew capacities and multiple home bases," European Journal of Operational Research, Elsevier, vol. 171(3), pages 1169-1181, June.
    16. Masoud Yaghini & Mohammad Karimi & Mohadeseh Rahbar, 2015. "A set covering approach for multi-depot train driver scheduling," Journal of Combinatorial Optimization, Springer, vol. 29(3), pages 636-654, April.
    17. Mariusz Izdebski & Marianna Jacyna, 2021. "An Efficient Hybrid Algorithm for Energy Expenditure Estimation for Electric Vehicles in Urban Service Enterprises," Energies, MDPI, vol. 14(7), pages 1-23, April.
    18. Attila Tóth & Miklós Krész, 2013. "An efficient solution approach for real-world driver scheduling problems in urban bus transportation," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(1), pages 75-94, June.
    19. Doi, Tsubasa & Nishi, Tatsushi & Voß, Stefan, 2018. "Two-level decomposition-based matheuristic for airline crew rostering problems with fair working time," European Journal of Operational Research, Elsevier, vol. 267(2), pages 428-438.
    20. Kirsten Hoffmann & Udo Buscher & Janis Sebastian Neufeld & Felix Tamke, 2017. "Solving Practical Railway Crew Scheduling Problems with Attendance Rates," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 59(3), pages 147-159, June.

    More about this item

    Keywords

    Scheduling; Meal time window; Time-space-state network; Lagrangian relaxation;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:114114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.