IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/118350.html
   My bibliography  Save this paper

Statistical inference for noisy incomplete binary matrix

Author

Listed:
  • Chen, Yunxiao
  • Li, Chengcheng
  • Ouyang, Jing
  • Xu, Gongjun

Abstract

We consider the statistical inference for noisy incomplete binary (or 1-bit) matrix. Despite the importance of uncertainty quantification to matrix completion, most of the categorical matrix completion literature focuses on point estimation and prediction. This paper moves one step further toward statistical inference for binary matrix completion. Under a popular nonlinear factor analysis model, we obtain a point estimator and derive its asymptotic normality. Moreover, our analysis adopts a flexible missing-entry design that does not require a random sampling scheme as required by most of the existing asymptotic results for matrix completion. Under reasonable conditions, the proposed estimator is statistically efficient and optimal in the sense that the Cramer-Rao lower bound is achieved asymptotically for the model parameters. Two applications are considered, including (1) linking two forms of an educational test and (2) linking the roll call voting records from multiple years in the United States Senate. The first application enables the comparison between examinees who took different test forms, and the second application allows us to compare the liberal-conservativeness of senators who did not serve in the Senate at the same time.

Suggested Citation

  • Chen, Yunxiao & Li, Chengcheng & Ouyang, Jing & Xu, Gongjun, 2023. "Statistical inference for noisy incomplete binary matrix," LSE Research Online Documents on Economics 118350, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:118350
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/118350/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. He, Xuming & Shao, Qi-Man, 2000. "On Parameters of Increasing Dimensions," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 120-135, April.
    2. Y Chen & X Li, 2022. "Determining the number of factors in high-dimensional generalized latent factor models [Eigenvalue ratio test for the number of factors]," Biometrika, Biometrika Trust, vol. 109(3), pages 769-782.
    3. Kidwell, Paul & Lebanon, Guy & Collins-Thompson, Kevyn, 2011. "Statistical Estimation of Word Acquisition With Application to Readability Prediction," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 21-30.
    4. Ghosh, Malay, 1995. "Inconsistent maximum likelihood estimators for the Rasch model," Statistics & Probability Letters, Elsevier, vol. 23(2), pages 165-170, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2019. "Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 749-758, April.
    3. Kato, Kengo & F. Galvao, Antonio & Montes-Rojas, Gabriel V., 2012. "Asymptotics for panel quantile regression models with individual effects," Journal of Econometrics, Elsevier, vol. 170(1), pages 76-91.
    4. repec:hal:wpspec:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    5. Adam C. Sales & Ben B. Hansen, 2020. "Limitless Regression Discontinuity," Journal of Educational and Behavioral Statistics, , vol. 45(2), pages 143-174, April.
    6. Christian M. Hafner & Oliver Linton & Haihan Tang, 2016. "Estimation of a multiplicative covariance structure in the large dimensional case," CeMMAP working papers 52/16, Institute for Fiscal Studies.
    7. Hafner, Christian M. & Linton, Oliver B. & Tang, Haihan, 2020. "Estimation of a multiplicative correlation structure in the large dimensional case," Journal of Econometrics, Elsevier, vol. 217(2), pages 431-470.
    8. HAFNER, Christian & LINTON, Oliver B. & TANG, Haihan, 2016. "Estimation of a Multiplicative Covariance Structure in the Large Dimensional Case," LIDAM Discussion Papers CORE 2016044, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Ji-Yeon Yang & Xuming He, 2011. "A Multistep Protein Lysate Array Quantification Method and its Statistical Properties," Biometrics, The International Biometric Society, vol. 67(4), pages 1197-1205, December.
    10. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Uniform post selection inference for LAD regression and other z-estimation problems," CeMMAP working papers CWP74/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Arun G. Chandrasekhar & Victor Chernozhukov & Francesca Molinari & Paul Schrimpf, 2019. "Best Linear Approximations to Set Identified Functions: With an Application to the Gender Wage Gap," NBER Working Papers 25593, National Bureau of Economic Research, Inc.
    12. Demian Pouzo, 2014. "Bootstrap Consistency for Quadratic Forms of Sample Averages with Increasing Dimension," Papers 1411.2701, arXiv.org, revised Aug 2015.
    13. Fan, Jianqing & Guo, Yongyi & Jiang, Bai, 2022. "Adaptive Huber regression on Markov-dependent data," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 802-818.
    14. Calhoun, Gray, 2011. "Hypothesis testing in linear regression when k/n is large," Journal of Econometrics, Elsevier, vol. 165(2), pages 163-174.
    15. Aiai Yu & Yujie Zhong & Xingdong Feng & Ying Wei, 2023. "Quantile regression for nonignorable missing data with its application of analyzing electronic medical records," Biometrics, The International Biometric Society, vol. 79(3), pages 2036-2049, September.
    16. Chaohua Dong & Jiti Gao & Bin Peng & Yundong Tu, 2021. "Multiple-index Nonstationary Time Series Models: Robust Estimation Theory and Practice," Papers 2111.02023, arXiv.org.
    17. Victor Chernozhukov & Roberto Rigobon & Thomas M. Stoker, 2010. "Set identification and sensitivity analysis with Tobin regressors," Quantitative Economics, Econometric Society, vol. 1(2), pages 255-277, November.
    18. V. Chernozhukov & I. Fernández-Val & A. Galichon, 2009. "Improving point and interval estimators of monotone functions by rearrangement," Biometrika, Biometrika Trust, vol. 96(3), pages 559-575.
    19. Christian M. Hafner & Oliver Linton & Haihan Tang, 2016. "Estimation of a Multiplicative Covariance Structure," CeMMAP working papers 23/16, Institute for Fiscal Studies.
    20. Han, Dongxiao & Huang, Jian & Lin, Yuanyuan & Shen, Guohao, 2022. "Robust post-selection inference of high-dimensional mean regression with heavy-tailed asymmetric or heteroskedastic errors," Journal of Econometrics, Elsevier, vol. 230(2), pages 416-431.
    21. Zongwu Cai & Xiyuan Liu, 2020. "A Functional-Coefficient VAR Model for Dynamic Quantiles with Constructing Financial Network," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202017, University of Kansas, Department of Economics, revised Oct 2020.

    More about this item

    Keywords

    1-bit matrix; matrix completion; binary data; asymptotic normality; non-linear latent variable model; CAREER SES-1846747; SES-2150601;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:118350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.