IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/102500.html
   My bibliography  Save this paper

Optimal design of experiments for liquid–liquid equilibria characterization via semidefinite programming

Author

Listed:
  • Duarte, Belmiro P.M.
  • Atkinson, Anthony C.
  • Granjo, Jose F.O
  • Oliveira, Nuno M.C

Abstract

Liquid–liquid equilibria (LLE) characterization is a task requiring considerable work and appreciable financial resources. Notable savings in time and effort can be achieved when the experimental plans use the methods of the optimal design of experiments that maximize the information obtained. To achieve this goal, a systematic optimization formulation based on Semidefinite Programming is proposed for finding optimal experimental designs for LLE studies carried out at constant pressure and temperature. The non-random two-liquid (NRTL) model is employed to represent species equilibria in both phases. This model, combined with mass balance relationships, provides a means of computing the sensitivities of the measurements to the parameters. To design the experiment, these sensitivities are calculated for a grid of candidate experiments in which initial mixture compositions are varied. The optimal design is found by maximizing criteria based on the Fisher Information Matrix (FIM). Three optimality criteria (D-, A- and E-optimal) are exemplified. The approach is demonstrated for two ternary systems where different sets of parameters are to be estimated.

Suggested Citation

  • Duarte, Belmiro P.M. & Atkinson, Anthony C. & Granjo, Jose F.O & Oliveira, Nuno M.C, 2019. "Optimal design of experiments for liquid–liquid equilibria characterization via semidefinite programming," LSE Research Online Documents on Economics 102500, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:102500
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/102500/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu, Yaming, 2010. "Strict monotonicity and convergence rate of Titterington's algorithm for computing D-optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1419-1425, June.
    2. Harman, Radoslav & Pronzato, Luc, 2007. "Improvements on removing nonoptimal support points in D-optimum design algorithms," Statistics & Probability Letters, Elsevier, vol. 77(1), pages 90-94, January.
    3. Pronzato, Luc, 2003. "Removing non-optimal support points in D-optimum design algorithms," Statistics & Probability Letters, Elsevier, vol. 63(3), pages 223-228, July.
    4. Belmiro P. M. Duarte & Weng Kee Wong, 2015. "Finding Bayesian Optimal Designs for Nonlinear Models: A Semidefinite Programming-Based Approach," International Statistical Review, International Statistical Institute, vol. 83(2), pages 239-262, August.
    5. Min Yang & Stefanie Biedermann & Elina Tang, 2013. "On Optimal Designs for Nonlinear Models: A General and Efficient Algorithm," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1411-1420, December.
    6. Torsney, B. & Mandal, S., 2006. "Two classes of multiplicative algorithms for constructing optimizing distributions," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1591-1601, December.
    7. Harman, Radoslav & Jurík, Tomás, 2008. "Computing c-optimal experimental designs using the simplex method of linear programming," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 247-254, December.
    8. Dette, Holger & Pepelyshev, Andrey & Zhigljavsky, Anatoly, 2008. "Improving updating rules in multiplicative algorithms for computing D-optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 312-320, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duarte, Belmiro P.M. & Atkinson, Anthony C. & Granjo, Jose F.O & Oliveira, Nuno M.C, 2021. "A model-based framework assisting the design of vapor-liquid equilibrium experimental plans," LSE Research Online Documents on Economics 107448, London School of Economics and Political Science, LSE Library.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Radoslav Harman & Eva Benková, 2017. "Barycentric algorithm for computing D-optimal size- and cost-constrained designs of experiments," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(2), pages 201-225, February.
    2. Pronzato, Luc, 2013. "A delimitation of the support of optimal designs for Kiefer’s ϕp-class of criteria," Statistics & Probability Letters, Elsevier, vol. 83(12), pages 2721-2728.
    3. Yu, Yaming, 2010. "Strict monotonicity and convergence rate of Titterington's algorithm for computing D-optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1419-1425, June.
    4. Harman, Radoslav & Rosa, Samuel, 2019. "Removal of the points that do not support an E-optimal experimental design," Statistics & Probability Letters, Elsevier, vol. 147(C), pages 83-89.
    5. Duarte, Belmiro P.M. & Sagnol, Guillaume & Wong, Weng Kee, 2018. "An algorithm based on semidefinite programming for finding minimax optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 99-117.
    6. Sahu, Nitesh & Babu, Prabhu, 2021. "A new monotonic algorithm for the E-optimal experiment design problem," Statistics & Probability Letters, Elsevier, vol. 174(C).
    7. Dette, Holger & Pepelyshev, Andrey & Zhigljavsky, Anatoly, 2008. "Improving updating rules in multiplicative algorithms for computing D-optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 312-320, December.
    8. Tim Holland-Letz & Holger Dette & Didier Renard, 2012. "Efficient Algorithms for Optimal Designs with Correlated Observations in Pharmacokinetics and Dose-Finding Studies," Biometrics, The International Biometric Society, vol. 68(1), pages 138-145, March.
    9. Monica Dessole & Fabio Marcuzzi & Marco Vianello, 2020. "dCATCH—A Numerical Package for d-Variate near G-Optimal Tchakaloff Regression via Fast NNLS," Mathematics, MDPI, vol. 8(7), pages 1-15, July.
    10. Selin Ahipaşaoğlu, 2015. "Fast algorithms for the minimum volume estimator," Journal of Global Optimization, Springer, vol. 62(2), pages 351-370, June.
    11. Dette, Holger & Pepelyshev, Andrey & Zhigljavsky, Anatoly, 2007. "Improving updating rules in multiplicativealgorithms for computing D-optimal designs," Technical Reports 2007,28, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    12. Michal Černý & Milan Hladík, 2012. "Two complexity results on c-optimality in experimental design," Computational Optimization and Applications, Springer, vol. 51(3), pages 1397-1408, April.
    13. Tommasi, C. & López-Fidalgo, J., 2010. "Bayesian optimum designs for discriminating between models with any distribution," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 143-150, January.
    14. Dette, Holger & Pepelyshev, Andrey & Zhigljavsky, Anatoly, 2014. "‘Nearly’ universally optimal designs for models with correlated observations," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1103-1112.
    15. Belmiro P. M. Duarte & Weng Kee Wong, 2015. "Finding Bayesian Optimal Designs for Nonlinear Models: A Semidefinite Programming-Based Approach," International Statistical Review, International Statistical Institute, vol. 83(2), pages 239-262, August.
    16. Rodríguez-Díaz, Juan M., 2017. "Computation of c-optimal designs for models with correlated observations," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 287-296.
    17. Duarte, Belmiro P.M. & Atkinson, Anthony C. & Granjo, Jose F.O & Oliveira, Nuno M.C, 2021. "A model-based framework assisting the design of vapor-liquid equilibrium experimental plans," LSE Research Online Documents on Economics 107448, London School of Economics and Political Science, LSE Library.
    18. Qing Liu & Yihui (Elina) Tang, 2015. "Construction of Heterogeneous Conjoint Choice Designs: A New Approach," Marketing Science, INFORMS, vol. 34(3), pages 346-366, May.
    19. Lenka Filová & Radoslav Harman, 2020. "Ascent with quadratic assistance for the construction of exact experimental designs," Computational Statistics, Springer, vol. 35(2), pages 775-801, June.
    20. Lucy L. Gao & Julie Zhou, 2017. "D-optimal designs based on the second-order least squares estimator," Statistical Papers, Springer, vol. 58(1), pages 77-94, March.

    More about this item

    Keywords

    optimal design of experiments; approximate designs; semidefinite programming; liquid–liquid equilibria; ternary systems;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:102500. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.