IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v85y2022i3d10.1007_s00184-021-00832-3.html
   My bibliography  Save this article

The mixture design threshold accepting algorithm for generating $$\varvec{D}$$ D -optimal designs of the mixture models

Author

Listed:
  • Haoyu Wang

    (Guangzhou University)

  • Chongqi Zhang

    (Guangzhou University)

Abstract

This paper proposes a target specialized meta-heuristic optimization algorithm, called Mixture Design Threshold Accepting (MDTA) algorithm, which applies the idea of the Threshold Accepting to generate the corresponding approximate D-optimal designs for a wide range of mixture models, with or without constraints imposed on the components. The MDTA algorithm is tested by many of common mixture models, among which some even have no solutions of the D-optimal design available in the literature. Other tests include 5 models with specific upper bound constraints. These results prove that the MDTA algorithm is very efficient in finding D-optimal designs for mixture models. In some scenarios it even outperforms the state-of-art algorithms, such as the ProjPSO algorithm and the REX algorithm. The source codes of the MDTA algorithm are freely available by writing to the first author.

Suggested Citation

  • Haoyu Wang & Chongqi Zhang, 2022. "The mixture design threshold accepting algorithm for generating $$\varvec{D}$$ D -optimal designs of the mixture models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(3), pages 345-371, April.
  • Handle: RePEc:spr:metrik:v:85:y:2022:i:3:d:10.1007_s00184-021-00832-3
    DOI: 10.1007/s00184-021-00832-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-021-00832-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-021-00832-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shuangzhe Liu & Heinz Neudecker, 1997. "Experiments with mixtures: Optimal allocations for becker’s models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 45(1), pages 53-66, January.
    2. Weng Kee Wong & Ray-Bing Chen & Chien-Chih Huang & Weichung Wang, 2015. "A Modified Particle Swarm Optimization Technique for Finding Optimal Designs for Mixture Models," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-23, June.
    3. Min Yang & Stefanie Biedermann & Elina Tang, 2013. "On Optimal Designs for Nonlinear Models: A General and Efficient Algorithm," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1411-1420, December.
    4. Angelis, L. & Bora-Senta, E. & Moyssiadis, C., 2001. "Optimal exact experimental designs with correlated errors through a simulated annealing algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 37(3), pages 275-296, September.
    5. Radoslav Harman & Lenka Filová & Peter Richtárik, 2020. "A Randomized Exchange Algorithm for Computing Optimal Approximate Designs of Experiments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 348-361, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lianyan Fu & Faming Ma & Zhuoxi Yu & Zhichuan Zhu, 2023. "Multiplication Algorithms for Approximate Optimal Distributions with Cost Constraints," Mathematics, MDPI, vol. 11(8), pages 1-14, April.
    2. Rosa, Samuel & Harman, Radoslav, 2022. "Computing minimum-volume enclosing ellipsoids for large datasets," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    3. García-Ródenas, Ricardo & García-García, José Carlos & López-Fidalgo, Jesús & Martín-Baos, José Ángel & Wong, Weng Kee, 2020. "A comparison of general-purpose optimization algorithms for finding optimal approximate experimental designs," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    4. Saeid Pooladsaz & Mahboobeh Doosti-Irani, 2024. "An algorithm for generating efficient block designs via a novel particle swarm approach," Computational Statistics, Springer, vol. 39(5), pages 2437-2449, July.
    5. Yu, Jun & Meng, Xiran & Wang, Yaping, 2023. "Optimal designs for semi-parametric dose-response models under random contamination," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    6. Àngela Sebastià Bargues & José-Luis Polo Sanz & Raúl Martín Martín, 2022. "Optimal Experimental Design for Parametric Identification of the Electrical Behaviour of Bioelectrodes and Biological Tissues," Mathematics, MDPI, vol. 10(5), pages 1-16, March.
    7. Peter Goos & Bradley Jones & Utami Syafitri, 2016. "I-Optimal Design of Mixture Experiments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 899-911, April.
    8. Mandal, N.K. & Pal, Manisha & Aggarwal, M.L., 2012. "Pseudo-Bayesian A-optimal designs for estimating the point of maximum in component-amount Darroch–Waller mixture model," Statistics & Probability Letters, Elsevier, vol. 82(6), pages 1088-1094.
    9. Patan, Maciej & Bogacka, Barbara, 2007. "Optimum experimental designs for dynamic systems in the presence of correlated errors," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5644-5661, August.
    10. Hertel, Ida & Kohler, Michael, 2013. "Estimation of the optimal design of a nonlinear parametric regression problem via Monte Carlo experiments," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 1-12.
    11. Belmiro P. M. Duarte, 2023. "Exact Optimal Designs of Experiments for Factorial Models via Mixed-Integer Semidefinite Programming," Mathematics, MDPI, vol. 11(4), pages 1-17, February.
    12. Nripes Mandal & Manisha Pal & Bikas Sinha & Premadhis Das, 2015. "Optimum mixture designs in a restricted region," Statistical Papers, Springer, vol. 56(1), pages 105-119, February.
    13. Winker, Peter & Gilli, Manfred, 2004. "Applications of optimization heuristics to estimation and modelling problems," Computational Statistics & Data Analysis, Elsevier, vol. 47(2), pages 211-223, September.
    14. Jacopo Paglia & Jo Eidsvik & Juha Karvanen, 2022. "Efficient spatial designs using Hausdorff distances and Bayesian optimization," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1060-1084, September.
    15. Duarte, Belmiro P.M. & Atkinson, Anthony C. & Oliveira, Nuno M.C., 2024. "Using hierarchical information-theoretic criteria to optimize subsampling of extensive datasets," LSE Research Online Documents on Economics 121641, London School of Economics and Political Science, LSE Library.
    16. Duarte, Belmiro P.M. & Atkinson, Anthony C. & Granjo, Jose F.O & Oliveira, Nuno M.C, 2019. "Optimal design of experiments for liquid–liquid equilibria characterization via semidefinite programming," LSE Research Online Documents on Economics 102500, London School of Economics and Political Science, LSE Library.
    17. Payne, Roger W., 2003. "General balance, large data sets and extensions to unbalanced treatment structures," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 297-304, October.
    18. Hilgers, Ralf-Dieter, 2000. "D-optimal design for Becker's minimum polynomial," Statistics & Probability Letters, Elsevier, vol. 49(2), pages 175-179, August.
    19. Mariano Amo-Salas & Jesús López-Fidalgo & Emilio Porcu, 2013. "Optimal designs for some stochastic processes whose covariance is a function of the mean," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 159-181, March.
    20. GOOS, Peter & JONES, Bradley & SYAFITRI, Utami, 2013. "I-optimal mixture designs," Working Papers 2013033, University of Antwerp, Faculty of Business and Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:85:y:2022:i:3:d:10.1007_s00184-021-00832-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.