IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v36y2025i1ne2842.html
   My bibliography  Save this article

Sampling design methods for making improved lake management decisions

Author

Listed:
  • Vilja Koski
  • Jo Eidsvik

Abstract

The ecological status of lakes is important for understanding an ecosystem's biodiversity as well as for service water quality and policies related to land use and agricultural run‐off. If the status is weak, then decisions about management alternatives need to be made. We assess the value of information of lake monitoring in Finland, where lakes are abundant. With reasonable ecological values and restoration costs, the value of information analysis can be compared with the survey's costs. Data are worth gathering if the expected value from the data exceeds the costs. From existing data, we specify a hierarchical Bayesian spatial logistic regression model for the ecological status of lakes. We then rely on functional approximations and Laplace approximations to get closed‐form expressions for the value of information of a sampling design. The case study contains thousands of lakes. The combinatorially difficult design problem is to wisely pick the right subset of lakes for data gathering. To solve this optimization problem, we study the performance of various heuristics: greedy forward algorithms, exchange algorithms and Bayesian optimization approaches. The value of information increases quickly when adding lakes to a small design but then flattens out. Good designs are usually composed of lakes that are difficult to manage, while also balancing a variety of covariates and geographic coverage. The designs achieved by forward selection are reasonably good, but we can outperform them with the more nuanced search algorithms. Statistical designs clearly outperform other designs selected according to simpler criteria.

Suggested Citation

  • Vilja Koski & Jo Eidsvik, 2025. "Sampling design methods for making improved lake management decisions," Environmetrics, John Wiley & Sons, Ltd., vol. 36(1), January.
  • Handle: RePEc:wly:envmet:v:36:y:2025:i:1:n:e2842
    DOI: 10.1002/env.2842
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2842
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2842?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Karine Hagesæther Foss & Gunhild Elisabeth Berget & Jo Eidsvik, 2022. "Using an autonomous underwater vehicle with onboard stochastic advection‐diffusion models to map excursion sets of environmental variables," Environmetrics, John Wiley & Sons, Ltd., vol. 33(1), February.
    2. Jacopo Paglia & Jo Eidsvik & Juha Karvanen, 2022. "Efficient spatial designs using Hausdorff distances and Bayesian optimization," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1060-1084, September.
    3. Raphaël Jauslin & Bardia Panahbehagh & Yves Tillé, 2022. "Sequential spatially balanced sampling," Environmetrics, John Wiley & Sons, Ltd., vol. 33(8), December.
    4. AWLP Thilan & P Menéndez & JM McGree, 2023. "Assessing the ability of adaptive designs to capture trends in hard coral cover," Environmetrics, John Wiley & Sons, Ltd., vol. 34(6), September.
    5. Radoslav Harman & Lenka Filová & Peter Richtárik, 2020. "A Randomized Exchange Algorithm for Computing Optimal Approximate Designs of Experiments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 348-361, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Àngela Sebastià Bargues & José-Luis Polo Sanz & Raúl Martín Martín, 2022. "Optimal Experimental Design for Parametric Identification of the Electrical Behaviour of Bioelectrodes and Biological Tissues," Mathematics, MDPI, vol. 10(5), pages 1-16, March.
    2. Bardia Panahbehagh & Raphaël Jauslin & Yves Tillé, 2024. "A general stream sampling design," Computational Statistics, Springer, vol. 39(6), pages 2899-2924, September.
    3. Jacopo Paglia & Jo Eidsvik & Juha Karvanen, 2022. "Efficient spatial designs using Hausdorff distances and Bayesian optimization," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1060-1084, September.
    4. Duarte, Belmiro P.M. & Atkinson, Anthony C. & Oliveira, Nuno M.C., 2024. "Using hierarchical information-theoretic criteria to optimize subsampling of extensive datasets," LSE Research Online Documents on Economics 121641, London School of Economics and Political Science, LSE Library.
    5. Haoyu Wang & Chongqi Zhang, 2022. "The mixture design threshold accepting algorithm for generating $$\varvec{D}$$ D -optimal designs of the mixture models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(3), pages 345-371, April.
    6. Lianyan Fu & Faming Ma & Zhuoxi Yu & Zhichuan Zhu, 2023. "Multiplication Algorithms for Approximate Optimal Distributions with Cost Constraints," Mathematics, MDPI, vol. 11(8), pages 1-14, April.
    7. Xin Zhao & Anton Grafström, 2024. "Estimation of change with partially overlapping and spatially balanced samples," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
    8. Fontana, Roberto & Rapallo, Fabio & Wynn, Henry P., 2022. "Circuits for robust designs," LSE Research Online Documents on Economics 113631, London School of Economics and Political Science, LSE Library.
    9. Rosa, Samuel & Harman, Radoslav, 2022. "Computing minimum-volume enclosing ellipsoids for large datasets," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    10. Roberto Fontana & Fabio Rapallo & Henry P. Wynn, 2022. "Circuits for robust designs," Statistical Papers, Springer, vol. 63(5), pages 1537-1560, October.
    11. Wilmer Prentius, 2024. "Locally correlated Poisson sampling," Environmetrics, John Wiley & Sons, Ltd., vol. 35(2), March.
    12. Sebastià Bargues, Àngela & Polo Sanz, José-Luis & García-Camacha Gutiérrez, Irene & Martín Martín, Raúl, 2023. "Practical implementation of optimal experimental design using the fractional-order Fricke–Morse bioimpedance model," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:36:y:2025:i:1:n:e2842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.