IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/107584.html
   My bibliography  Save this paper

Optimal design of experiments for implicit models

Author

Listed:
  • Duarte, Belmiro P.M.
  • Atkinson, Anthony C.
  • Granjo, Jose F.O
  • Oliveira, Nuno M.C

Abstract

Explicit models representing the response variables as functions of the control variables are standard in virtually all scientific fields. For these models, there is a vast literature on the optimal design of experiments (ODoE) to provide good estimates of the parameters with the use of minimal resources. Contrarily, the ODoE for implicit models is more complex and has not been systematically addressed. Nevertheless, there are practical examples where the models relating the response variables, the parameters and the factors are implicit or hardly convertible into an explicit form. We propose a general formulation for developing the theory of the ODoE for implicit algebraic models to specifically find continuous local designs. The treatment relies on converting the ODoE problem into an optimization problem of the nonlinear programming (NLP) class which includes the construction of the parameter sensitivities and the Cholesky decomposition of the Fisher information matrix. The NLP problem generated has multiple local optima, and we use global solvers, combined with an equivalence theorem from the theory of ODoE, to ensure the global optimality of our continuous optimal designs. We consider D- and A-optimality criteria and apply the approach to five examples of practical interest in chemistry and thermodynamics. Supplementary materials for this article are available online.

Suggested Citation

  • Duarte, Belmiro P.M. & Atkinson, Anthony C. & Granjo, Jose F.O & Oliveira, Nuno M.C, 2022. "Optimal design of experiments for implicit models," LSE Research Online Documents on Economics 107584, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:107584
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/107584/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu, Yaming, 2010. "Strict monotonicity and convergence rate of Titterington's algorithm for computing D-optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1419-1425, June.
    2. Harman, Radoslav & Pronzato, Luc, 2007. "Improvements on removing nonoptimal support points in D-optimum design algorithms," Statistics & Probability Letters, Elsevier, vol. 77(1), pages 90-94, January.
    3. Pronzato, Luc, 2003. "Removing non-optimal support points in D-optimum design algorithms," Statistics & Probability Letters, Elsevier, vol. 63(3), pages 223-228, July.
    4. Belmiro P. M. Duarte & Weng Kee Wong, 2015. "Finding Bayesian Optimal Designs for Nonlinear Models: A Semidefinite Programming-Based Approach," International Statistical Review, International Statistical Institute, vol. 83(2), pages 239-262, August.
    5. Min Yang & Stefanie Biedermann & Elina Tang, 2013. "On Optimal Designs for Nonlinear Models: A General and Efficient Algorithm," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1411-1420, December.
    6. Duarte, Belmiro P.M. & Wong, Weng Kee & Atkinson, Anthony C., 2015. "A Semi-Infinite Programming based algorithm for determining T-optimum designs for model discrimination," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 11-24.
    7. Torsney, B. & Mandal, S., 2006. "Two classes of multiplicative algorithms for constructing optimizing distributions," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1591-1601, December.
    8. Harman, Radoslav & Jurík, Tomás, 2008. "Computing c-optimal experimental designs using the simplex method of linear programming," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 247-254, December.
    9. Dette, Holger & Pepelyshev, Andrey & Zhigljavsky, Anatoly, 2008. "Improving updating rules in multiplicative algorithms for computing D-optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 312-320, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duarte, Belmiro P.M. & Atkinson, Anthony C. & Granjo, Jose F.O & Oliveira, Nuno M.C, 2019. "Optimal design of experiments for liquid–liquid equilibria characterization via semidefinite programming," LSE Research Online Documents on Economics 102500, London School of Economics and Political Science, LSE Library.
    2. Belmiro P. M. Duarte, 2023. "Exact Optimal Designs of Experiments for Factorial Models via Mixed-Integer Semidefinite Programming," Mathematics, MDPI, vol. 11(4), pages 1-17, February.
    3. Radoslav Harman & Eva Benková, 2017. "Barycentric algorithm for computing D-optimal size- and cost-constrained designs of experiments," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(2), pages 201-225, February.
    4. Pronzato, Luc, 2013. "A delimitation of the support of optimal designs for Kiefer’s ϕp-class of criteria," Statistics & Probability Letters, Elsevier, vol. 83(12), pages 2721-2728.
    5. Duarte, Belmiro P.M. & Sagnol, Guillaume & Wong, Weng Kee, 2018. "An algorithm based on semidefinite programming for finding minimax optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 99-117.
    6. Yu, Yaming, 2010. "Strict monotonicity and convergence rate of Titterington's algorithm for computing D-optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1419-1425, June.
    7. Lucy L. Gao & Julie Zhou, 2017. "D-optimal designs based on the second-order least squares estimator," Statistical Papers, Springer, vol. 58(1), pages 77-94, March.
    8. Harman, Radoslav & Rosa, Samuel, 2019. "Removal of the points that do not support an E-optimal experimental design," Statistics & Probability Letters, Elsevier, vol. 147(C), pages 83-89.
    9. Sahu, Nitesh & Babu, Prabhu, 2021. "A new monotonic algorithm for the E-optimal experiment design problem," Statistics & Probability Letters, Elsevier, vol. 174(C).
    10. Lianyan Fu & Faming Ma & Zhuoxi Yu & Zhichuan Zhu, 2023. "Multiplication Algorithms for Approximate Optimal Distributions with Cost Constraints," Mathematics, MDPI, vol. 11(8), pages 1-14, April.
    11. Dette, Holger & Pepelyshev, Andrey & Zhigljavsky, Anatoly, 2008. "Improving updating rules in multiplicative algorithms for computing D-optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 312-320, December.
    12. Rosa, Samuel & Harman, Radoslav, 2022. "Computing minimum-volume enclosing ellipsoids for large datasets," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    13. Tim Holland-Letz & Holger Dette & Didier Renard, 2012. "Efficient Algorithms for Optimal Designs with Correlated Observations in Pharmacokinetics and Dose-Finding Studies," Biometrics, The International Biometric Society, vol. 68(1), pages 138-145, March.
    14. Yu, Jun & Meng, Xiran & Wang, Yaping, 2023. "Optimal designs for semi-parametric dose-response models under random contamination," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    15. Monica Dessole & Fabio Marcuzzi & Marco Vianello, 2020. "dCATCH—A Numerical Package for d-Variate near G-Optimal Tchakaloff Regression via Fast NNLS," Mathematics, MDPI, vol. 8(7), pages 1-15, July.
    16. Selin Ahipaşaoğlu, 2015. "Fast algorithms for the minimum volume estimator," Journal of Global Optimization, Springer, vol. 62(2), pages 351-370, June.
    17. Len Bos & Federico Piazzon & Marco Vianello, 2020. "Near G-optimal Tchakaloff designs," Computational Statistics, Springer, vol. 35(2), pages 803-819, June.
    18. Dette, Holger & Pepelyshev, Andrey & Zhigljavsky, Anatoly, 2007. "Improving updating rules in multiplicativealgorithms for computing D-optimal designs," Technical Reports 2007,28, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    19. Michal Černý & Milan Hladík, 2012. "Two complexity results on c-optimality in experimental design," Computational Optimization and Applications, Springer, vol. 51(3), pages 1397-1408, April.
    20. Chiara Tommasi & Juan M. Rodríguez-Díaz & Jesús F. López-Fidalgo, 2023. "An equivalence theorem for design optimality with respect to a multi-objective criterion," Statistical Papers, Springer, vol. 64(4), pages 1041-1056, August.

    More about this item

    Keywords

    model-based optimal designs; continuous designs; implicit models; nonlinear programming;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:107584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.