IDEAS home Printed from https://ideas.repec.org/p/ecl/stabus/3349.html

Sampling-Based vs. Design-Based Uncertainty in Regression Analysis

Author

Listed:
  • Abadie, Alberto

    (MIT)

  • Athey, Susan

    (Stanford University)

  • Imbens, Guido W.

    (Stanford University)

  • Wooldridge, Jeffrey M.

    (MI State University)

Abstract

Consider a researcher estimating the parameters of a regression function based on data for all 50 states in the United States or on data for all visits to a website. What is the interpretation of the estimated parameters and the standard errors? In practice, researchers typically assume that the sample is randomly drawn from a large population of interest and report standard errors that are designed to capture sampling variation. This is common practice, even in applications where it is difficult to articulate what that population of interest is, and how it differs from the sample. In this article, we explore an alternative approach to inference, which is partly design-based. In a design-based setting, the values of some of the regressors can be manipulated, perhaps through a policy intervention. Design-based uncertainty emanates from lack of knowledge about the values that the regression outcome would have taken under alternative interventions. We derive standard errors that account for design-based uncertainty instead of, or in addition to, sampling-based uncertainty. We show that our standard errors in general are smaller than the infinite-population sampling-based standard errors and provide conditions under which they coincide.

Suggested Citation

  • Abadie, Alberto & Athey, Susan & Imbens, Guido W. & Wooldridge, Jeffrey M., 2017. "Sampling-Based vs. Design-Based Uncertainty in Regression Analysis," Research Papers 3349, Stanford University, Graduate School of Business.
  • Handle: RePEc:ecl:stabus:3349
    as

    Download full text from publisher

    File URL: https://www.gsb.stanford.edu/gsb-cmis/gsb-cmis-download-auth/406616
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alberto Abadie & Susan Athey & Guido W Imbens & Jeffrey M Wooldridge, 2023. "When Should You Adjust Standard Errors for Clustering?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 138(1), pages 1-35.
    2. Ohlrogge, Michael, 2022. "Financial Crises and Legislation," Journal of Financial Crises, Yale Program on Financial Stability (YPFS), vol. 4(3), pages 1-59, April.
    3. James J. Heckman & Ganesh Karapakula, 2019. "The Perry Preschoolers at Late Midlife: A Study in Design-Specific Inference," Working Papers 2019-034, Human Capital and Economic Opportunity Working Group.
    4. Matthew Ridley & Camille Terrier, 2025. "Fiscal and Education Spillovers from Charter School Expansion," Journal of Human Resources, University of Wisconsin Press, vol. 60(4), pages 1356-1404.
    5. Yusuke Narita, 2018. "Experiment-as-Market: Incorporating Welfare into Randomized Controlled Trials," Cowles Foundation Discussion Papers 2127r, Cowles Foundation for Research in Economics, Yale University, revised May 2019.
    6. Hibbard, Patrick F. & Chapman, Jason E., 2024. "Drug treatment courts and community-level crime," Journal of Criminal Justice, Elsevier, vol. 94(C).
    7. Athey, Susan & Imbens, Guido W., 2022. "Design-based analysis in Difference-In-Differences settings with staggered adoption," Journal of Econometrics, Elsevier, vol. 226(1), pages 62-79.
    8. Michael P. Leung, 2022. "Causal Inference Under Approximate Neighborhood Interference," Econometrica, Econometric Society, vol. 90(1), pages 267-293, January.
    9. Chand, Satish & Clemens, Michael A., 2023. "Human capital investment under exit options: Evidence from a natural quasi-experiment," Journal of Development Economics, Elsevier, vol. 163(C).
    10. Yusuke Narita, 2018. "Toward an Ethical Experiment," Cowles Foundation Discussion Papers 2127, Cowles Foundation for Research in Economics, Yale University.
    11. James G. MacKinnon & Matthew D. Webb, 2020. "When and How to Deal with Clustered Errors in Regression Models," Working Paper 1421, Economics Department, Queen's University.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecl:stabus:3349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/gsstaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.