IDEAS home Printed from https://ideas.repec.org/p/eca/wpaper/2013-292215.html
   My bibliography  Save this paper

Nonparametric Analysis of Random Utility Models: Computational Tools for Statistical Testing

Author

Listed:
  • Bram De Rock
  • Laurens Cherchye
  • Bart Smeulders

Abstract

Kitamura and Stoye (2018) recently proposed a nonparametric statistical test for random utility models of consumer behavior. The test is formulated in terms of linear inequality constraints and a quadratic objective function. While the nonparametric test is conceptually appealing, its practical implementation is computationally challenging. In this note, we develop a column generation approach to operationalize the test. We show that these novel computational tools generate considerable computational gains in practice, which substantially increases the empirical usefulness of Kitamura and Stoye’s statistical test.

Suggested Citation

  • Bram De Rock & Laurens Cherchye & Bart Smeulders, 2019. "Nonparametric Analysis of Random Utility Models: Computational Tools for Statistical Testing," Working Papers ECARES 2019-19, ULB -- Universite Libre de Bruxelles.
  • Handle: RePEc:eca:wpaper:2013/292215
    as

    Download full text from publisher

    File URL: https://dipot.ulb.ac.be/dspace/bitstream/2013/292215/3/2019-19-CHERCHYE_DEROCK_SMEULDERS-nonparametric.pdf
    File Function: Œuvre complète ou partie de l'œuvre
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Yuichi Kitamura & Jörg Stoye, 2018. "Nonparametric Analysis of Random Utility Models," Econometrica, Econometric Society, vol. 86(6), pages 1883-1909, November.
    2. George B. Dantzig & Philip Wolfe, 1960. "Decomposition Principle for Linear Programs," Operations Research, INFORMS, vol. 8(1), pages 101-111, February.
    3. Stefan Hoderlein & Jörg Stoye, 2014. "Revealed Preferences in a Heterogeneous Population," The Review of Economics and Statistics, MIT Press, vol. 96(2), pages 197-213, May.
    4. Yuichi Kitamura & Jorg Stoye, 2019. "Nonparametric Counterfactuals in Random Utility Models," Papers 1902.08350, arXiv.org, revised May 2019.
    5. Varian, Hal R, 1982. "The Nonparametric Approach to Demand Analysis," Econometrica, Econometric Society, vol. 50(4), pages 945-973, July.
    6. Rahul Deb & Yuichi Kitamura & John K.-H. Quah & Jorg Stoye, 2017. "Revealed Price Preference: Theory and Stochastic Testing," Cowles Foundation Discussion Papers 2087, Cowles Foundation for Research in Economics, Yale University.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roy Allen & Paweł Dziewulski & John Rehbeck, 2024. "Revealed statistical consumer theory," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 77(3), pages 823-847, May.
    2. Nobuo Koida & Koji Shirai, 2024. "A dual approach to nonparametric characterization for random utility models," Papers 2403.04328, arXiv.org, revised Jun 2024.
    3. Changkuk Im & John Rehbeck, 2021. "Non-rationalizable Individuals, Stochastic Rationalizability, and Sampling," Papers 2102.03436, arXiv.org, revised Oct 2021.
    4. Turansick, Christopher, 2022. "Identification in the random utility model," Journal of Economic Theory, Elsevier, vol. 203(C).
    5. Christopher Turansick, 2023. "An Alternative Approach for Nonparametric Analysis of Random Utility Models," Papers 2303.14249, arXiv.org, revised May 2024.
    6. Mike Tsionas & Valentin Zelenyuk, 2021. "Goodness-of-fit in Optimizing Models of Production: A Generalization with a Bayesian Perspective," CEPA Working Papers Series WP182021, School of Economics, University of Queensland, Australia.
    7. Thomas Demuynck & Tom Potoms, 2022. "Testing revealed preference models with unobserved randomness: a column generation approach," Working Papers ECARES 2022-42, ULB -- Universite Libre de Bruxelles.
    8. Daniele Caliari & Henrik Petri, 2024. "Irrational Random Utility Models," Papers 2403.10208, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuichi Kitamura & Jörg Stoye, 2018. "Nonparametric Analysis of Random Utility Models," Econometrica, Econometric Society, vol. 86(6), pages 1883-1909, November.
    2. Wilfried Youmbi, 2024. "Nonparametric Analysis of Random Utility Models Robust to Nontransitive Preferences," Papers 2406.13969, arXiv.org.
    3. Aguiar, Victor H. & Hjertstrand, Per & Serrano, Roberto, 2020. "A Rationalization of the Weak Axiom of Revealed Preference," Working Paper Series 1321, Research Institute of Industrial Economics.
    4. Francesca Molinari, 2020. "Microeconometrics with Partial Identification," Papers 2004.11751, arXiv.org.
    5. Victor H. Aguiar & Per Hjertstrand & Roberto Serrano, 2020. "Rationalizable Incentives: Interim Implementation of Sets in Rationalizable Strategies," Working Papers 2020-16, Brown University, Department of Economics.
    6. Im, Changkuk & Rehbeck, John, 2022. "Non-rationalizable individuals and stochastic rationalizability," Economics Letters, Elsevier, vol. 219(C).
    7. Sam Cosaert & Thomas Demuynck, 2018. "Nonparametric Welfare and Demand Analysis with Unobserved Individual Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 100(2), pages 349-361, May.
    8. Demuynck, Thomas & Hjertstrand, Per, 2019. "Samuelson's Approach to Revealed Preference Theory: Some Recent Advances," Working Paper Series 1274, Research Institute of Industrial Economics.
    9. Nail Kashaev & Victor H. Aguiar, 2022. "Nonparametric Analysis of Dynamic Random Utility Models," Papers 2204.07220, arXiv.org.
    10. Victor H Aguiar & Nail Kashaev, 2021. "Stochastic Revealed Preferences with Measurement Error [Consistency between Household-level Consumption Data from Registers and Surveys]," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 88(4), pages 2042-2093.
    11. Rahul Deb & Yuichi Kitamura & John K H Quah & Jörg Stoye, 2023. "Revealed Price Preference: Theory and Empirical Analysis," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(2), pages 707-743.
    12. Nobuo Koida & Koji Shirai, 2024. "A dual approach to nonparametric characterization for random utility models," Papers 2403.04328, arXiv.org, revised Jun 2024.
    13. Cherchye, Laurens & Demuynck, Thomas & De Rock, Bram, 2018. "Transitivity of preferences: when does it matter?," Theoretical Economics, Econometric Society, vol. 13(3), September.
    14. Daniele Caliari & Henrik Petri, 2024. "Irrational Random Utility Models," Papers 2403.10208, arXiv.org.
    15. Arthur Lewbel & Krishna Pendakur, 2017. "Unobserved Preference Heterogeneity in Demand Using Generalized Random Coefficients," Journal of Political Economy, University of Chicago Press, vol. 125(4), pages 1100-1148.
    16. Laurens Cherchye & Thomas Demuynck & Bram De Rock & Frederic Vermeulen, 2017. "Household Consumption When the Marriage Is Stable," American Economic Review, American Economic Association, vol. 107(6), pages 1507-1534, June.
    17. Richard Blundell & Dennis Kristensen & Rosa Matzkin, 2017. "Individual counterfactuals with multidimensional unobserved heterogeneity," CeMMAP working papers 60/17, Institute for Fiscal Studies.
    18. John K.-H. Quah & Koji Shirai, 2015. "A revealed preference theory of monotone choice and strategic complementarity," KIER Working Papers 914, Kyoto University, Institute of Economic Research.
    19. Matias D. Cattaneo & Xinwei Ma & Yusufcan Masatlioglu & Elchin Suleymanov, 2020. "A Random Attention Model," Journal of Political Economy, University of Chicago Press, vol. 128(7), pages 2796-2836.
    20. Dieter Saelens, 2022. "Unitary or collective households? A nonparametric rationality and separability test using detailed data on consumption expenditures and time use," Empirical Economics, Springer, vol. 62(2), pages 637-677, February.

    More about this item

    Keywords

    computational tools; statistical testing;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eca:wpaper:2013/292215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Benoit Pauwels (email available below). General contact details of provider: https://edirc.repec.org/data/arulbbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.