IDEAS home Printed from https://ideas.repec.org/p/ebg/heccah/1246.html
   My bibliography  Save this paper

On the Efficiency of Social Learning

Author

Listed:
  • Rosenberg, Dinah

  • Vieille, Nicolas

Abstract

We revisit well-known models of learning in which a sequence of agents make a binary decision on the basis of a private signal and additional information. We introduce efficiency measures, aimed at capturing the speed of learning in such contexts. Whatever the distribution of private signals, we show that the learning efficiency is the same, whether each agent observes the entire sequence of earlier decisions, or only the previous decision. We provide a simple necessary and sufficient condition on the signal distributions under which learning is efficient. This condition fails to hold in many prominent cases of interest. Extensions are discussed.

Suggested Citation

  • Rosenberg, Dinah & Vieille, Nicolas, 2017. "On the Efficiency of Social Learning," HEC Research Papers Series 1246, HEC Paris.
  • Handle: RePEc:ebg:heccah:1246
    DOI: 10.2139/ssrn.3081876
    Note: models of learning; Social Learning
    as

    Download full text from publisher

    File URL: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3081876
    File Function: Full text
    Download Restriction: no

    File URL: https://libkey.io/10.2139/ssrn.3081876?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mira Frick & Ryota Iijima & Yuhta Ishii, 2021. "Learning Efficiency of Multi-Agent Information Structures," Cowles Foundation Discussion Papers 2299R, Cowles Foundation for Research in Economics, Yale University, revised Dec 2021.
    2. Elchanan Mossel & Manuel Mueller‐Frank & Allan Sly & Omer Tamuz, 2020. "Social Learning Equilibria," Econometrica, Econometric Society, vol. 88(3), pages 1235-1267, May.
    3. Mira Frick & Ryota Iijima & Yuhta Ishii, 2020. "Belief Convergence under Misspecified Learning: A Martingale Approach," Cowles Foundation Discussion Papers 2235R2, Cowles Foundation for Research in Economics, Yale University, revised Dec 2021.
    4. Caio Lorecchio, 2022. "Persuading crowds," UB School of Economics Working Papers 2022/434, University of Barcelona School of Economics.
    5. Hann-Caruthers, Wade & Martynov, Vadim V. & Tamuz, Omer, 2018. "The speed of sequential asymptotic learning," Journal of Economic Theory, Elsevier, vol. 173(C), pages 383-409.
    6. Sushil Bikhchandani & David Hirshleifer & Omer Tamuz & Ivo Welch, 2024. "Information Cascades and Social Learning," Journal of Economic Literature, American Economic Association, vol. 62(3), pages 1040-1093, September.
    7. Wanying Huang & Philipp Strack & Omer Tamuz, 2024. "Learning in Repeated Interactions on Networks," Econometrica, Econometric Society, vol. 92(1), pages 1-27, January.
    8. Aloosh, Arash & Choi, Hyung-Eun & Ouzan, Samuel, 2023. "The tail wagging the dog: How do meme stocks affect market efficiency?," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 68-78.
    9. Xuanye Wang, 2021. "Fragility of Confounded Learning," Papers 2106.07712, arXiv.org.
    10. Mira Frick & Ryota Iijima & Yuhta Ishii, 2020. "Belief Convergence under Misspecified Learning: A Martingale Approach," Cowles Foundation Discussion Papers 2235R3, Cowles Foundation for Research in Economics, Yale University, revised Apr 2022.
    11. Yuxin Liu & M. Amin Rahimian, 2025. "Privacy-Aware Sequential Learning," Papers 2502.19525, arXiv.org, revised Sep 2025.
    12. Zhang, Min, 2021. "Non-monotone social learning," Journal of Economic Behavior & Organization, Elsevier, vol. 185(C), pages 565-579.
    13. Krishna Dasaratha & Kevin He, 2019. "Aggregative Efficiency of Bayesian Learning in Networks," Papers 1911.10116, arXiv.org, revised Sep 2024.
    14. Arieli, Itai & Babichenko, Yakov & Smorodinsky, Rann, 2020. "Identifiable information structures," Games and Economic Behavior, Elsevier, vol. 120(C), pages 16-27.
    15. Mira Frick & Ryota Iijima & Yuhta Ishii, 2021. "Learning Efficiency of Multi-Agent Information Structures," Cowles Foundation Discussion Papers 2299R2, Cowles Foundation for Research in Economics, Yale University, revised Jul 2022.
    16. Chen, Fengwen & Wang, Bing & Wang, Wei & Hu, Chen, 2024. "The secret of imitating wrongdoing: Accidental or deliberate," Research in International Business and Finance, Elsevier, vol. 69(C).

    More about this item

    Keywords

    ;

    JEL classification:

    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ebg:heccah:1246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Antoine Haldemann The email address of this maintainer does not seem to be valid anymore. Please ask Antoine Haldemann to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/hecpafr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.