IDEAS home Printed from
   My bibliography  Save this paper

A New Approach to Small Sample Theory



It is argued that an integral part of the process by which the results of small sample theory can be transmitted to the applied econometrician will in the future be played by reliable direct approximation to the sampling and posterior distributions that are of interest in the precise setting of the model and the data set with which the investigator is working. The purpose of this paper is to introduce a new technique of approximating distributions which is sufficiently general to be widely used and is developed in very general terms and should be widely applicable in mathematical statistics and econometrics. It has the advantage, unlike existing methods that are based on asymptotic expansions, of readily incorporating extraneous information on the distribution; even qualitative or soft quantitative information, such as that based on Monte Carlo experiments. It is shown that best uniform approximants in the form of rational functions exist for a general class of probability density functions. Characterization, uniqueness and convergence theorems for these approximations are given. An operational procedure for extracting rational approximants with good global behavior is devised and is based on modifying multiple-point Pade approximants which will typically utilize purely local information about the behavior of the body and the tails of the distribution. The new procedure is applied to a simple simultaneous equation estimator and gives exceptionally accurate results even for tiny values of the concentration parameter.

Suggested Citation

  • Peter C.B. Phillips, 1981. "A New Approach to Small Sample Theory," Cowles Foundation Discussion Papers 608, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:608

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Peter C.B. Phillips, 1978. "A Note on the Saddlepoint Approximation in the First Order Non-Circular Autoregression," Cowles Foundation Discussion Papers 487, Cowles Foundation for Research in Economics, Yale University.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:608. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew Regan). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.