IDEAS home Printed from
   My bibliography  Save this paper

A new distance for data sets (and probability measures) in a RKHS context


  • Martos, Gabriel


In this paper we define distance functions for data sets (and distributions) in a RKHS context. To this aim we introduce kernels for data sets that provide a metrization of the set of points sets (the power set). An interesting point in the proposed kernel distance is that it takes into account the underlying (data) generating probability distributions. In particular, we propose kernel distances that rely on the estimation of density level sets of the underlying distribution, and can be extended from data sets to probability measures. The performance of the proposed distances is tested on a variety of simulated distributions plus a couple of real pattern recognition problems

Suggested Citation

  • Martos, Gabriel, 2013. "A new distance for data sets (and probability measures) in a RKHS context," DES - Working Papers. Statistics and Econometrics. WS ws131514, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:ws131514

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Matsui, Hidetoshi & Konishi, Sadanori, 2011. "Variable selection for functional regression models via the L1 regularization," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3304-3310, December.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Probability measures;

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws131514. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ana Poveda). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.