IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Handwritten digit classification

  • Andrea Giuliodori


  • Rosa Lillo


  • Daniel Peña


Registered author(s):

    Pattern recognition is one of the major challenges in statistics framework. Its goal is the feature extraction to classify the patterns into categories. A well-known example in this field is the handwritten digit recognition where digits have to be assigned into one of the 10 classes using some classification method. Our purpose is to present alternative classification methods based on statistical techniques. We show a comparison between a multivariate and a probabilistic approach, concluding that both methods provide similar results in terms of test-error rate. Experiments are performed on the known MNIST and USPS databases in binary-level image. Then, as an additional contribution we introduce a novel method to binarize images, based on statistical concepts associated to the written trace of the digit

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by Universidad Carlos III, Departamento de Estadística y Econometría in its series Statistics and Econometrics Working Papers with number ws111712.

    in new window

    Date of creation: Jun 2011
    Date of revision:
    Handle: RePEc:cte:wsrepe:ws111712
    Contact details of provider: Postal: C/ Madrid, 126 - 28903 GETAFE (MADRID)
    Phone: 6249847
    Fax: 6249849
    Web page:

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Klaus Nordhausen, 2009. "The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition by Trevor Hastie, Robert Tibshirani, Jerome Friedman," International Statistical Review, International Statistical Institute, vol. 77(3), pages 482-482, December.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws111712. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.