IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Oracle Inequalities and Optimal Inference under Group Sparsity

  • Karim Lounici

    (Crest)

  • Massimiliano Pontil

    (Crest)

  • Alexandre B. Tsybakov

    (Crest)

  • Sara Van De Geer

    (Crest)

We consider the problem of estimating a sparse linear regression vector  under a gaussiannoise model, for the purpose of both prediction and model selection. We assume that priorknowledge is available on the sparsity pattern, namely the set of variables is partitioned intoprescribed groups, only few of which are relevant in the estimation process. This group sparsityassumption suggests us to consider the Group Lasso method as a means to estimate . Weestablish oracle inequalities for the prediction and `2 estimation errors of this estimator. Thesebounds hold under a restricted eigenvalue condition on the design matrix. Under a strongercoherence condition, we derive bounds for the estimation error for mixed (2, p)-norms with1  p  1. When p = 1, this result implies that a threshold version of the Group Lassoestimator selects the sparsity pattern of  with high probability. Next, we prove that the rateof convergence of our upper bounds is optimal in a minimax sense, up to a logarithmic factor,for all estimators over a class of group sparse vectors. Furthermore, we establish lower boundsfor the prediction and `2 estimation errors of the usual Lasso estimator. Using this result, wedemonstrate that the Group Lasso can achieve an improvement in the prediction and estimationproperties as compared to the Lasso.An important application of our results is provided by the problem of estimating multipleregression equation simultaneously or multi-task learning. In this case, our results lead toref nements of the results in [22] and allow one to establish the quantitative advantage of theGroup Lasso over the usual Lasso in the multi-task setting. Finally, within the same setting, weshow how our results can be extended to more general noise distributions, of which we onlyrequire the fourth moment to be f nite. To obtain this extension, we establish a new maximalmoment inequality, which may be of independent interest.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.crest.fr/images/doctravail/2010-35.pdf
File Function: Crest working paper version
Download Restriction: no

Paper provided by Centre de Recherche en Economie et Statistique in its series Working Papers with number 2010-35.

as
in new window

Length: 38
Date of creation: 2010
Date of revision:
Handle: RePEc:crs:wpaper:2010-35
Contact details of provider: Postal: 15 Boulevard Gabriel Peri 92245 Malakoff Cedex
Phone: 01 41 17 60 81
Web page: http://www.crest.fr

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:crs:wpaper:2010-35. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Florian Sallaberry)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.