IDEAS home Printed from https://ideas.repec.org/p/cnb/wpaper/2025-2.html
   My bibliography  Save this paper

Forecasting Disaggregated Producer Prices: A Fusion of Machine Learning and Econometric Techniques

Author

Listed:
  • Sona Benecka

Abstract

This paper proposes a novel framework to the forecast of disaggregated producer prices using both machine learning techniques and traditional econometric models. Due to the complexity and diversity of pricing dynamics within the euro area, no single model consistently outperforms others across all sectors. This highlights the necessity for a tailored approach that leverages the strengths of various forecasting methods to effectively capture the unique characteristics of each sector. Our forecasting exercise has highlighted diverse pricing strategies linked to commodity prices, autoregressive behavior, or a mixture of both, with pipeline pressures being especially pertinent to final goods. Employing a mixture of a wide range of models has proven to be a successful strategy in managing the varied pricing behavior at the sectoral level. Notably, tree-based methods, like Random Forests or XGBoost, have shown significant efficacy in forecasting short-term PPI inflation across a number of sectors, especially when accounting for pipeline pressures. Moreover, newly proposed Hybrid ARMAX models proved to be a suitable alternative for sectors tightly linked to commodity prices.

Suggested Citation

  • Sona Benecka, 2025. "Forecasting Disaggregated Producer Prices: A Fusion of Machine Learning and Econometric Techniques," Working Papers 2025/2, Czech National Bank, Research and Statistics Department.
  • Handle: RePEc:cnb:wpaper:2025/2
    as

    Download full text from publisher

    File URL: https://www.cnb.cz/export/sites/cnb/en/economic-research/.galleries/research_publications/cnb_wp/cnbwp_2025_02.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Disaggregated producer prices; forecasting; inflation; machine learning;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cnb:wpaper:2025/2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tomas Karhanek (email available below). General contact details of provider: https://edirc.repec.org/data/cnbgvcz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.