IDEAS home Printed from https://ideas.repec.org/p/cgd/wpaper/481.html

Using Supervised Learning to Select Audit Targets in Performance-Based Financing in Health: An Example from Zambia

Author

Listed:
  • Dhruv Grover

    (University of California, San Diego)

  • Sebastian Bauhoff

    (Center for Global Development)

  • Jed Friedman

    (World Bank)

Abstract

Independent verification is a critical component of performance-based financing (PBF) in health care, in which facilities are offered incentives to increase the volume of specific services but the same incentives may lead them to over-report. We examine alternative strategies for targeted sampling of health clinics for independent verification. Specifically, we empirically compare several methods of random sampling and predictive modeling on data from a Zambian PBF pilot that contains reported and verified performance for quantity indicators of 140 clinics. Our results indicate that machine learning methods, particularly Random Forest, outperform other approaches and can increase the cost-effectiveness of verification activities.

Suggested Citation

  • Dhruv Grover & Sebastian Bauhoff & Jed Friedman, 2018. "Using Supervised Learning to Select Audit Targets in Performance-Based Financing in Health: An Example from Zambia," Working Papers 481, Center for Global Development.
  • Handle: RePEc:cgd:wpaper:481
    as

    Download full text from publisher

    File URL: https://www.cgdev.org/publication/using-supervised-learning-select-audit-targets-performance-based-financing-health
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • I15 - Health, Education, and Welfare - - Health - - - Health and Economic Development
    • I18 - Health, Education, and Welfare - - Health - - - Government Policy; Regulation; Public Health

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cgd:wpaper:481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Publications Manager (email available below). General contact details of provider: https://edirc.repec.org/data/cgdevus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.