IDEAS home Printed from https://ideas.repec.org/p/cep/stidar/50.html
   My bibliography  Save this paper

Robust Lorenz Curves: A Semiparametric Approach

Author

Listed:
  • Frank A Cowell
  • Maria-Pia Victoria-Feser

Abstract

Lorenz curves and second-order dominance criteria are known to be sensitive to data contamination in the right tail of the distribution. We propose two ways of dealing with the problem: (1) Estimate Lorenz curves using parametric models for income distributions, and (2) Combine empirical estimation with a parametric (robust) estimation of the upper tail of the distribution using the Pareto model. Approach (2) is preferred because of its flexibility. Using simulations we show the dramatic effect of a few contaminated data on the Lorenz ranking and the performance of the robust approach (2). Statistical inference tools are also provided.

Suggested Citation

  • Frank A Cowell & Maria-Pia Victoria-Feser, 2001. "Robust Lorenz Curves: A Semiparametric Approach," STICERD - Distributional Analysis Research Programme Papers 50, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  • Handle: RePEc:cep:stidar:50
    as

    Download full text from publisher

    File URL: http://sticerd.lse.ac.uk/dps/darp/DARP50.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Cowell, Frank & Victoria-Feser, Maria-Pia, 2001. "Distributional dominance with dirty data," LSE Research Online Documents on Economics 2239, London School of Economics and Political Science, LSE Library.
    2. Moyes, Patrick, 1987. "A new concept of Lorenz domination," Economics Letters, Elsevier, vol. 23(2), pages 203-207.
    3. Frank A. Cowell & Maria-Pia Victoria-Feser, 2002. "Welfare Rankings in the Presence of Contaminated Data," Econometrica, Econometric Society, vol. 70(3), pages 1221-1233, May.
    4. McDonald, James B & Ransom, Michael R, 1979. "Functional Forms, Estimation Techniques and the Distribution of Income," Econometrica, Econometric Society, vol. 47(6), pages 1513-1525, November.
    5. Frank A Cowell & Maria-Pia Victoria-Feser, 1999. "Statistical Inference for Welfare under Complete and Incomplete Information," STICERD - Distributional Analysis Research Programme Papers 47, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    6. Frank A Cowell & Maria-Pia Victoria-Feser, 1996. "Welfare Judgements in the Presence Contaminated Data," STICERD - Distributional Analysis Research Programme Papers 13, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cowell, Frank A. & Victoria-Feser, Maria-Pia, 2006. "Distributional Dominance With Trimmed Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 291-300, July.
    2. Cowell, Frank A. & Flachaire, Emmanuel, 2007. "Income distribution and inequality measurement: The problem of extreme values," Journal of Econometrics, Elsevier, vol. 141(2), pages 1044-1072, December.
    3. Frank Cowell & Maria-Pia Victoria-Feser, 2003. "Distribution-Free Inference for Welfare Indices under Complete and Incomplete Information," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 1(3), pages 191-219, December.
    4. Hasegawa, Hikaru & Kozumi, Hideo, 2003. "Estimation of Lorenz curves: a Bayesian nonparametric approach," Journal of Econometrics, Elsevier, vol. 115(2), pages 277-291, August.

    More about this item

    Keywords

    Welfare dominance; Lorenz curve; Pareto model; M-estimators.;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • D63 - Microeconomics - - Welfare Economics - - - Equity, Justice, Inequality, and Other Normative Criteria and Measurement

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cep:stidar:50. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://sticerd.lse.ac.uk/_new/publications/default.asp .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.