IDEAS home Printed from https://ideas.repec.org/p/cea/doctra/e2004_31.html
   My bibliography  Save this paper

A spreading method to improve efficiency prediction

Author

Listed:

Abstract

In efficiency analysis by means of a stochastic frontier production function, the composite error variable includes the inefficiency component. For this reason, individual prediction cannot be made directly from an estimation of the error in the model. In order to solve this problem, Jondrow et al (1982), and Battese and Coelli (1988) separately developed two different procedures, based on the expectation operator of the conditional distributions. Although the two predictors are different, each suffers from a shrinkage effect with respect to the distribution of theoretical efficiency. Our study of the behaviour of these two predictors leads us to conclude that the value of the gamma parameter has a great influence on the above-mentioned effect, producing a truncation of the distribution that could be more than 50%, so that the extreme values of the efficiency can never be estimated by the predictors considered. We also propose a method that spreads out the predicted efficiencies in order to minimise the shrinkage effect. The Monte Carlo results demonstrate that the corrected predictions have a better behaviour than the original predictors.

Suggested Citation

  • Rafaela Dios-Palomares & Jose Miguel Martínez Paz, 2004. "A spreading method to improve efficiency prediction," Economic Working Papers at Centro de Estudios Andaluces E2004/31, Centro de Estudios Andaluces.
  • Handle: RePEc:cea:doctra:e2004_31
    as

    Download full text from publisher

    File URL: http://public.centrodeestudiosandaluces.es/pdfs/E200431.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kumbhakar, Subal C. & Löthgren, Mickael, 1998. "A Monte Carlo Analysis of Technical Inefficiency Predictors," SSE/EFI Working Paper Series in Economics and Finance 229, Stockholm School of Economics.
    2. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    3. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phill Wheat & William Greene & Andrew Smith, 2014. "Understanding prediction intervals for firm specific inefficiency scores from parametric stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 42(1), pages 55-65, August.
    2. Shih-Tang Hwu & Tsu-Tan Fu & Wen-Jen Tsay, 2021. "Estimation and efficiency evaluation of stochastic frontier models with interval dependent variables," Journal of Productivity Analysis, Springer, vol. 56(1), pages 33-44, August.
    3. Konstantinos Giannakas & Kien Tran & Vangelis Tzouvelekas, 2003. "Predicting technical effciency in stochastic production frontier models in the presence of misspecification: a Monte-Carlo analysis," Applied Economics, Taylor & Francis Journals, vol. 35(2), pages 153-161.
    4. Hasan, Iftekhar & Lozano-Vivas, Ana, 2002. "Organizational Form and Expense Preference: Spanish Experience," Bulletin of Economic Research, Wiley Blackwell, vol. 54(2), pages 135-150, April.
    5. Raushan Bokusheva & Lukáš Čechura & Subal C. Kumbhakar, 2023. "Estimating persistent and transient technical efficiency and their determinants in the presence of heterogeneity and endogeneity," Journal of Agricultural Economics, Wiley Blackwell, vol. 74(2), pages 450-472, June.
    6. Barros, Carlos Pestana & Williams, Jonathan, 2013. "The random parameters stochastic frontier cost function and the effectiveness of public policy: Evidence from bank restructuring in Mexico," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 98-108.
    7. Hong Ngoc Nguyen & Christopher O’Donnell, 2025. "Using stochastic frontier analysis to assess the performance of public service providers in the presence of demand uncertainty," Journal of Productivity Analysis, Springer, vol. 64(1), pages 61-79, August.
    8. Martín Rossi, 2000. "Análisis de eficiencia aplicado a la regulación ¿Es importante la Distribución Elegida para el Término de Ineficiencia?," UADE Textos de Discusión 22_2000, Instituto de Economía, Universidad Argentina de la Empresa.
    9. Mochebelele, Motsamai T. & Winter-Nelson, Alex, 2000. "Migrant Labor and Farm Technical Efficiency in Lesotho," World Development, Elsevier, vol. 28(1), pages 143-153, January.
    10. Dhehibi, Boubaker & Lachaal, Lassaad & Elloumi, Mohamed & Messaoud, Emna B., 2007. "Measurement and Sources of Technical Inefficiency in the Tunisian Citrus Growing Sector," 103rd Seminar, April 23-25, 2007, Barcelona, Spain 9391, European Association of Agricultural Economists.
    11. Stephen M. Miller & Terrence M. Clauretie & Thomas M. Springer, 2006. "Economies Of Scale And Cost Efficiencies: A Panel‐Data Stochastic‐Frontier Analysis Of Real Estate Investment Trusts," Manchester School, University of Manchester, vol. 74(4), pages 483-499, July.
    12. Anthony Rezitis & Kostas Tsiboukas & Stauros Tsoukalas, 2002. "Measuring technical efficiency in the Greek agricultural sector," Applied Economics, Taylor & Francis Journals, vol. 34(11), pages 1345-1357.
    13. B. E. Bravo‐Ureta & L. Rieger, 1990. "Alternative Production Frontier Methodologies And Dairy Farm Efficiency," Journal of Agricultural Economics, Wiley Blackwell, vol. 41(2), pages 215-226, May.
    14. Bill Greene with Antonio Alvarez (Univ. of Oviedo) & Carlos Arias (Univ. of Leon), 2004. "Accounting For Unobservables In Production Models: Management And Inefficiency," Econometric Society 2004 Australasian Meetings 341, Econometric Society.
    15. Sandrine Kablan & Ouidad Yousfi, 2015. "Performance of Islamic Banks across the World: An Empirical Analysis over the Period 2001-2008," International Journal of Empirical Finance, Research Academy of Social Sciences, vol. 4(1), pages 27-46.
    16. Goyal, S.K. & Suhag, K.S. & Pandey, U.K., 2006. "An Estimation of Technical Efficiency of Paddy Farmers in Haryana State of India," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 61(01), pages 1-15.
    17. repec:use:tkiwps:3232 is not listed on IDEAS
    18. Philippe Gagnepain & Marc Ivaldi, 2002. "Stochastic Frontiers and Asymmetric Information Models," Journal of Productivity Analysis, Springer, vol. 18(2), pages 145-159, September.
    19. Nay, Myo Aung, 2011. "Agricultural efficiency of rice farmers in Myanmar : a case study in selected areas," IDE Discussion Papers 306, Institute of Developing Economies, Japan External Trade Organization(JETRO).
    20. Christopher F. Parmeter & Hung-Jen Wang & Subal C. Kumbhakar, 2017. "Nonparametric estimation of the determinants of inefficiency," Journal of Productivity Analysis, Springer, vol. 47(3), pages 205-221, June.
    21. Adegbite, O. & Adeoye, I. B., . "Technical Efficiency of Pineapple Production in Osun State, Nigeria," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 7(01), pages 1-10.

    More about this item

    Keywords

    ;
    ;
    ;

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cea:doctra:e2004_31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Susana Mérida The email address of this maintainer does not seem to be valid anymore. Please ask Susana Mérida to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/fcanges.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.