IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt5p06q6k5.html
   My bibliography  Save this paper

Design, Field Implementation and Evaluation of Adaptive Ramp Metering Algorithms

Author

Listed:
  • Horowitz, Roberto
  • May, Adolf
  • Skabardonis, Alex
  • Varaiya, Pravin
  • Zhang, Michael
  • Gomes, Gabriel
  • Munoz, Laura
  • Sun, Xiaotian
  • Sun, Dengfeng

Abstract

The main objectives of Task Order 4136 are (1) the design of improved freeway on-ramp metering strategies that make use of recent developments in traffic data collection, traffic simulation, and control theory, and (2) the testing of these methods on a 14-mile segment of Interstate 210 Westbound in southern California. To date, the major accomplishments of this project include (i) the development of a complete procedure for constructing and calibrating a microscopic freeway traffic model using the Vissim microsimulator, which was applied successfully to the full I-210 test site, (ii) a simulation study, using the calibrated Vissim I-210 model, comparing the fixed-rate, Percent Occupancy, and Alinea local ramp metering schemes, which showed that Alinea can improve freeway conditions when mainline occupancies are measured upstream of the on-ramp (as on I-210 and most California freeways), as well as when occupancy sensors are downstream of the on-ramp, (iii) development of computationally efficient macroscopic freeway traffic models, the Modified Cell Transmission Model (MCTM) and Switching-Mode Model (SMM), validation of these models on a 2-mile segment of I-210, and determination of observability and controllability properties of the SMM modes, (iv) design of a semi-automated method for calibrating the parameters of the MCTM and SMM, which, when applied to an MCTM representation of the full I-210 segment, was able to reproduce the approximate behavior of traffic congestion, yielding about 2% average error in the predicted Total Travel Time (TTT), and (v) development of a new technique for generating optimal coordinated ramp metering plans, which minimizes a TTT-like objective function. Simulation results for a macroscopic model of the 14-mile I-210 segment have shown that the optimal plan predicts an 8.4% savings in TTT, with queue constraints, over the 5-hour peak period.

Suggested Citation

  • Horowitz, Roberto & May, Adolf & Skabardonis, Alex & Varaiya, Pravin & Zhang, Michael & Gomes, Gabriel & Munoz, Laura & Sun, Xiaotian & Sun, Dengfeng, 2005. "Design, Field Implementation and Evaluation of Adaptive Ramp Metering Algorithms," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt5p06q6k5, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt5p06q6k5
    as

    Download full text from publisher

    File URL: http://www.escholarship.org/uc/item/5p06q6k5.pdf;origin=repeccitec
    Download Restriction: no

    References listed on IDEAS

    as
    1. Daganzo, Carlos F. & Lin, Wei-Hua & Del Castillo, Jose M., 1997. "A simple physical principle for the simulation of freeways with special lanes and priority vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 31(2), pages 103-125, April.
    2. Cayford, Randall & Lin, Wei-Hua & Daganzo, Carlos F., 1997. "The Netcell Simulation Package: Technical Description," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4j27j106, Institute of Transportation Studies, UC Berkeley.
    3. Gomes, Gabriel & May, Adolf & Horowitz, Roberto, 2004. "Calibration of VISSIM for a Congested Freeway," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt7bs9b2v3, Institute of Transportation Studies, UC Berkeley.
    4. Daganzo, Carlos F., 1994. "The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 269-287, August.
    5. Daganzo, Carlos F., 1997. "A continuum theory of traffic dynamics for freeways with special lanes," Transportation Research Part B: Methodological, Elsevier, vol. 31(2), pages 83-102, April.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt5p06q6k5. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lisa Schiff). General contact details of provider: http://edirc.repec.org/data/itucbus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.