IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt1f7661b4.html
   My bibliography  Save this paper

Lane-Level Localization and Map Matching for Advanced Connected and Automated Vehicle (CAV) Applications

Author

Listed:
  • Farrell, Jay A
  • Wu, Guoyuan
  • Hu, Wang
  • Oswald, David
  • Hao, Peng

Abstract

Reliable, lane-level, absolute position determination for connected and automated vehicles (CAV’s) is near at hand due to advances in sensor and computing technology. These capabilities in conjunction with high-definition maps enable lane determination, per lane queue determination, and enhanced performance in applications. This project investigated, analyzed, and demonstrated these related technologies. Project contributions include: (1) Experimental analysis demonstrating that the USDOT Mapping tool achieves internal horizontal accuracy better than 0.2 meters (standard deviation); (2) Theoretical analysis of lane determination accuracy as a function of both distance from the lane centerline and positioning accuracy; (3) Experimental demonstration and analysis of lane determination along the Riverside Innovation Corridor showing that for a vehicle driven within 0.9 meters of the lane centerline, the correct lane is determined for over 90% of the samples; (4) Development of a VISSIM position error module to enable simulation analysis of lane determination and lane queue estimation as a function of positioning error; (5) Development of a lane-level intersection queue prediction algorithm; Simulation evaluation of lane determination accuracy which matched the theoretical analysis; and (6) Simulation evaluation of lane queue prediction accuracy as a function of both CAV penetration rate and positioning accuracy. Conclusions of the simulation analysis in item (6) are the following: First, when the penetration rate is fixed, higher queue length estimation error occurs as the position error increases. However, the disparity across different position error levels diminishes with the decrease of penetration rate. Second, as the penetration rate decreases, the queue length estimation error significantly increases under the same GNSS error level. The current methods that exist for queue length prediction only utilize vehicle position and a penetration rate estimate. These results motivate the need for new methods that more fully utilize the information available on CAVs (e.g., distance to vehicles in front, back, left, and right) to decrease the sensitivity to penetration rate. View the NCST Project Webpage

Suggested Citation

  • Farrell, Jay A & Wu, Guoyuan & Hu, Wang & Oswald, David & Hao, Peng, 2023. "Lane-Level Localization and Map Matching for Advanced Connected and Automated Vehicle (CAV) Applications," Institute of Transportation Studies, Working Paper Series qt1f7661b4, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt1f7661b4
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/1f7661b4.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hao, Peng & Ban, Xuegang (Jeff) & Guo, Dong & Ji, Qiang, 2014. "Cycle-by-cycle intersection queue length distribution estimation using sample travel times," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 185-204.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Qiaoli & Shi, Zhongke & Yu, Shaowei & Zhou, Jie, 2018. "Analytical evaluation of the use of left-turn phasing for single left-turn lane only," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 266-303.
    2. Hao, Peng & Wang, Chao, 2018. "Evaluating Environmental Impact of Traffic Congestion in Real Time Based on Sparse Mobile Crowd-sourced Data," Institute of Transportation Studies, Working Paper Series qt7q6760rz, Institute of Transportation Studies, UC Davis.
    3. Hao, Peng & Ban, Xuegang, 2015. "Long queue estimation for signalized intersections using mobile data," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 54-73.
    4. Wong, Wai & Shen, Shengyin & Zhao, Yan & Liu, Henry X., 2019. "On the estimation of connected vehicle penetration rate based on single-source connected vehicle data," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 169-191.
    5. Wang, Zhengli & Zhu, Liyun & Ran, Bin & Jiang, Hai, 2020. "Queue profile estimation at a signalized intersection by exploiting the spatiotemporal propagation of shockwaves," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 59-71.
    6. Qinaat Hussain & Charitha Dias & Ali Al-Shahrani & Intizar Hussain, 2022. "Safety Analysis of Merging Vehicles Based on the Speed Difference between on-Ramp and Following Mainstream Vehicles Using NGSIM Data," Sustainability, MDPI, vol. 14(24), pages 1-12, December.
    7. Xingliang Liu & Jian Wang & Tangzhi Liu & Jin Xu, 2021. "Forecasting Spatiotemporal Boundary of Emergency-Event-Based Traffic Congestion in Expressway Network Considering Highway Node Acceptance Capacity," Sustainability, MDPI, vol. 13(21), pages 1-17, November.
    8. Yang, Qiaoli & Shi, Zhongke, 2018. "The evolution process of queues at signalized intersections under batch arrivals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 413-425.
    9. Comert, Gurcan, 2016. "Queue length estimation from probe vehicles at isolated intersections: Estimators for primary parameters," European Journal of Operational Research, Elsevier, vol. 252(2), pages 502-521.

    More about this item

    Keywords

    Engineering; Autonomous vehicles; Connected vehicles; Lane distribution; Location; Mapping; Simulation; Traffic queuing; Vehicle detectors;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt1f7661b4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.