IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Dynamic Mechanism Design: Incentive Compatibility, Profit Maximization and Information Disclosure

Listed author(s):
  • Alessandro Pavan
  • Ilya Segal
  • Juuso Toikka

This paper examines the problem of how to design incentive-compatible mechanisms in environments in which the agents' private information evolves stochastically over time and in which decisions have to be made in each period. The environments we consider are fairly general in that the agents' types are allowed to evolve in a non-Markov way, decisions are allowed to affect the type distributions and payoffs are not restricted to be separable over time. Our first result is the characterization of a dynamic payoff formula that describes the evolution of the agents' equilibrium payoffs in an incentive-compatible mechanism. The formula summarizes all local first-order conditions taking into account how current information affects the dynamics of expected payoffs. The formula generalizes the familiar envelope condition from static mechanism design: the key difference is that a variation in the current types now impacts payoffs in all subsequent periods both directly and through the effect on the distributions of future types. First, we identify assumptions on the primitive environment that guarantee that our dynamic payoff formula is a necessary condition for incentive compatibility. Next, we specialize this formula to quasi-linear environments and show how it permits one to establish a dynamic "revenue-equivalence" result and to construct a formula for dynamic virtual surplus which is instrumental for the design of optimal mechanisms. We then turn to the characterization of sufficient conditions for incentive compatibility. Lastly, we show how our results can be put to work in a variety of applications that include the design of profit-maximizing dynamic auctions with AR(k) values and the provision of experience goods.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Collegio Carlo Alberto in its series Carlo Alberto Notebooks with number 84.

in new window

Length: 84 pages
Date of creation: 2008
Handle: RePEc:cca:wpaper:84
Contact details of provider: Postal:
Via Real Collegio, 30, 10024 Moncalieri (To)

Phone: +390116705000
Fax: +390116476847
Web page:

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cca:wpaper:84. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Giovanni Bert)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.