IDEAS home Printed from https://ideas.repec.org/p/cam/camdae/2525.html
   My bibliography  Save this paper

Mitigating Market Incompleteness with Minor Market Distortions: The Case of Negative Spot Prices For Electricity

Author

Listed:
  • Abada, I.
  • Ehrenmann, A.

Abstract

Risk-mitigation instruments are essential for fostering investments in renewable electricity-production assets and their role is all the more important in the case of market incompleteness. At the same time, such instruments may induce distortions of competition, thereby limiting the effectiveness of spot markets. An example of such an effect is the dramatic increase in negative prices observed in many power markets. Some mechanisms that protect investors from risk decouple operating incentives from spot prices, leading to inefficient trading. At the same time, those negative prices incentivize investments in storage. Such distortions have so far been overlooked in most quantitative research focused on market incompleteness. Using a bi-level programming approach, this paper proposes a framework within which to integrate market distortions when analyzing incompleteness. The lower level of the framework models the power economy via an equilibrium formulation of the two-stage investment problem under risk aversion, where agents invest in the first stage before operating in the stochastic second stage. A central planner offers a set of risk-mitigation schemes in the form of Contracts for Difference and price markups to foster investments, but these schemes can distort competitive bidding. On the upper level, the central planner tunes the design of contracts optimally so that social welfare is maximized. We provide an existence result and undertake a thorough numerical simulation inspired by the French power system, which demonstrates the potential for optimally adjusting the risk-mitigation instruments offered to electricity producers to enhance welfare and limit the prevalence of negative prices.

Suggested Citation

  • Abada, I. & Ehrenmann, A., 2025. "Mitigating Market Incompleteness with Minor Market Distortions: The Case of Negative Spot Prices For Electricity," Cambridge Working Papers in Economics 2525, Faculty of Economics, University of Cambridge.
  • Handle: RePEc:cam:camdae:2525
    as

    Download full text from publisher

    File URL: https://www.econ.cam.ac.uk/sites/default/files/publication-cwpe-pdfs/cwpe2525.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christian Kaps & Simone Marinesi & Serguei Netessine, 2023. "When Should the Off-Grid Sun Shine at Night? Optimum Renewable Generation and Energy Storage Investments," Management Science, INFORMS, vol. 69(12), pages 7633-7650, December.
    2. Lei Guo & Gui-Hua Lin & Jane J. Ye, 2015. "Solving Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 166(1), pages 234-256, July.
    3. Downward, Anthony & Young, David & Zakeri, Golbon, 2016. "Electricity retail contracting under risk-aversion," European Journal of Operational Research, Elsevier, vol. 251(3), pages 846-859.
    4. Bichuch, Maxim & Hobbs, Benjamin F. & Song, Xinyue, 2023. "Identifying optimal capacity expansion and differentiated capacity payments under risk aversion and market power: A financial Stackelberg game approach," Energy Economics, Elsevier, vol. 120(C).
    5. Meus, Jelle & De Vits, Sarah & S'heeren, Nele & Delarue, Erik & Proost, Stef, 2021. "Renewable electricity support in perfect markets: Economic incentives under diverse subsidy instruments," Energy Economics, Elsevier, vol. 94(C).
    6. de Maere d’Aertrycke, Gauthier & Ehrenmann, Andreas & Smeers, Yves, 2017. "Investment with incomplete markets for risk: The need for long-term contracts," Energy Policy, Elsevier, vol. 105(C), pages 571-583.
    7. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    8. Markowitz, Harry, 2014. "Mean–variance approximations to expected utility," European Journal of Operational Research, Elsevier, vol. 234(2), pages 346-355.
    9. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    10. Gabriel, Steven A. & Leuthold, Florian U., 2010. "Solving discretely-constrained MPEC problems with applications in electric power markets," Energy Economics, Elsevier, vol. 32(1), pages 3-14, January.
    11. Yangfang (Helen) Zhou & Alan Scheller-Wolf & Nicola Secomandi & Stephen Smith, 2016. "Electricity Trading and Negative Prices: Storage vs. Disposal," Management Science, INFORMS, vol. 62(3), pages 880-898, March.
    12. López Prol, Javier & Steininger, Karl W. & Zilberman, David, 2020. "The cannibalization effect of wind and solar in the California wholesale electricity market," Energy Economics, Elsevier, vol. 85(C).
    13. RALPH, Daniel & SMEERS, Yves, 2015. "Risk trading and endogenous probabilities in investment equilibria," LIDAM Reprints CORE 2727, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    14. Charness, Gary & Gneezy, Uri & Imas, Alex, 2013. "Experimental methods: Eliciting risk preferences," Journal of Economic Behavior & Organization, Elsevier, vol. 87(C), pages 43-51.
    15. Gauthier DE MAERE D’AERTRYCKE & Andreas EHRENMANN & Yves SMEERS, 2017. "Investment with incomplete markets for risk: the need for long-term contracts," LIDAM Reprints CORE 2849, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. Michael Ferris & Andy Philpott, 2022. "Dynamic Risked Equilibrium," Operations Research, INFORMS, vol. 70(3), pages 1933-1952, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ibrahim Abada & Andreas Ehrenmann, 2025. "Mitigating market incompleteness with minor market distortions: the case of negative spot prices for electricity," Working Papers EPRG2507, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    2. Botor, Benjamin & Böcker, Benjamin & Kallabis, Thomas & Weber, Christoph, 2021. "Information shocks and profitability risks for power plant investments – impacts of policy instruments," Energy Economics, Elsevier, vol. 102(C).
    3. Inzunza, Andrés & Muñoz, Francisco D. & Moreno, Rodrigo, 2021. "Measuring the effects of environmental policies on electricity markets risk," Energy Economics, Elsevier, vol. 102(C).
    4. Hoogsteyn, Alexander & Meus, Jelle & Bruninx, Kenneth & Delarue, Erik, 2025. "Interactions and distortions of different support policies for green hydrogen," Energy Economics, Elsevier, vol. 141(C).
    5. Dimanchev, Emil & Gabriel, Steven A. & Reichenberg, Lina & Korpås, Magnus, 2024. "Consequences of the missing risk market problem for power system emissions," Energy Economics, Elsevier, vol. 136(C).
    6. Nathan Dahlin & Rahul Jain, 2020. "A Risk Aware Two-Stage Market Mechanism for Electricity with Renewable Generation," Papers 2003.06119, arXiv.org.
    7. Ambrosius, Mirjam & Egerer, Jonas & Grimm, Veronika & van der Weijde, Adriaan H., 2022. "Risk aversion in multilevel electricity market models with different congestion pricing regimes," Energy Economics, Elsevier, vol. 105(C).
    8. Iman Khajepour & Geoffrey Pritchard & Danny Ralph & Golbon Zakeri, 2025. "On monotone completion of risk markets: Limit results for incomplete risk markets," Papers 2504.18436, arXiv.org.
    9. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    10. Martin Herdegen & Cosimo Munari, 2023. "An elementary proof of the dual representation of Expected Shortfall," Papers 2306.14506, arXiv.org.
    11. Yuanying Guan & Zhanyi Jiao & Ruodu Wang, 2022. "A reverse ES (CVaR) optimization formula," Papers 2203.02599, arXiv.org, revised May 2023.
    12. Xia Han & Bin Wang & Ruodu Wang & Qinyu Wu, 2021. "Risk Concentration and the Mean-Expected Shortfall Criterion," Papers 2108.05066, arXiv.org, revised Apr 2022.
    13. Hirbod Assa & Liyuan Lin & Ruodu Wang, 2022. "Calibrating distribution models from PELVE," Papers 2204.08882, arXiv.org, revised Jun 2023.
    14. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    15. Silvia Faroni & Olivier Le Courtois & Krzysztof Ostaszewski, 2022. "Equivalent Risk Indicators: VaR, TCE, and Beyond," Risks, MDPI, vol. 10(8), pages 1-19, July.
    16. Yi Shen & Zachary Van Oosten & Ruodu Wang, 2024. "Partial Law Invariance and Risk Measures," Papers 2401.17265, arXiv.org, revised Dec 2024.
    17. Loisel, Rodica & Simon, Corentin, 2021. "Market strategies for large-scale energy storage: Vertical integration versus stand-alone player," Energy Policy, Elsevier, vol. 151(C).
    18. Boffino, Luigi & Conejo, Antonio J. & Sioshansi, Ramteen & Oggioni, Giorgia, 2019. "A two-stage stochastic optimization planning framework to decarbonize deeply electric power systems," Energy Economics, Elsevier, vol. 84(C).
    19. Naoki Makimoto & Ryuta Takashima, 2023. "Capacity Market and Investments in Power Generations: Risk-Averse Decision-Making of Power Producer," Energies, MDPI, vol. 16(10), pages 1-19, May.
    20. Bellini, Fabio & Fadina, Tolulope & Wang, Ruodu & Wei, Yunran, 2022. "Parametric measures of variability induced by risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 270-284.

    More about this item

    Keywords

    Incomplete Markets; Market Distortion; Bi-level Programming; Stochastic Equilibrium Models; Optimal Regulation; Power Markets;
    All these keywords.

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cam:camdae:2525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jake Dyer (email available below). General contact details of provider: https://www.econ.cam.ac.uk/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.