IDEAS home Printed from
   My bibliography  Save this paper

Robust confidence intervals for Hodges–Lehmann median difference


  • Roger Newson

    () (National Heart and Lung Institute, Imperial College London)


The cendif module is part of the somersd package, and calculates confidence intervals for the Hodges–Lehmann median difference between values of a variable in two subpopulations. The traditional Lehmann formula, unlike the formula used by cendif, assumes that the two subpopulation distributions are different only in location, and that the subpopulations are therefore equally variable. The cendif formula therefore contrasts with the Lehmann formula as the unequal-variance t-test contrasts with the equal-variance t-test. In a simulation study, designed to test cendif to destruction, the performance of cendif was compared to that of the Lehmann formula, using coverage probabilities and median confidence interval width ratios. The simulations involved sampling from pairs of Normal or Cauchy distributions, with subsample sizes ranging from 5 to 40, and between-subpopulation variability scale ratios ranging from 1 to 4. If the sample numbers were equal, then both methods gave coverage probabilities close to the advertized confidence level. However, if the sample numbers were unequal, then the Lehmann coverage probabilities were over-conservative if the smaller sample was from the less variable population, and over-liberal if the smaller sample was from the more variable population. The cendif coverage probability was usually closer to the advertized level, if the smaller sample was not very small. However, if the sample sizes were 5 and 40, and the two populations were equally variable, then the Lehmann coverage probability was close to its advertised level, while the cendif coverage probability was over-liberal. The cendif confidence interval, in its present form, is therefore robust both to non-Normality and to unequal variablity, but may be less robust to the possibility that the smaller sample size is very small. Possibilities for improvement are discussed.

Suggested Citation

  • Roger Newson, 2007. "Robust confidence intervals for Hodges–Lehmann median difference," United Kingdom Stata Users' Group Meetings 2007 01, Stata Users Group.
  • Handle: RePEc:boc:usug07:01

    Download full text from publisher

    File URL:
    File Function: presentation slides
    Download Restriction: no

    References listed on IDEAS

    1. Roger Newson, 2006. "Confidence intervals for rank statistics: Percentile slopes, differences, and ratios," Stata Journal, StataCorp LP, vol. 6(4), pages 497-520, December.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:usug07:01. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.