IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Testing Homogeneity in Demand Systems Nonparametrically: Theory and Evidence

Listed author(s):
  • Berthold R. Haag


  • Stefan Hoderlein

    (Boston College)

  • Sonya Mihaleva

    (Brown University)

Homogeneity of degree zero has often been rejected in empirical studies that employ parametric models. This paper proposes a test for homogeneity that does not depend on the correct specification of the functional form of the empirical model. The test statistic we propose is based on kernel regression and extends nonparametric specification tests to systems of equations with weakly dependent data. We discuss a number of practically important issues and further extensions. In particular, we focus on a novel bootstrap version of the test statistic. Moreover, we show that the same test also allows to assess the validity of functional form assumptions. When we apply the test to British household data, we find homogeneity generally well accepted. In contrast, we reject homogeneity with a standard almost ideal parametric demand system. Using our test for functional form we obtain however that it it precisely this functional form assumption which is rejected. Our findings indicate that the rejections of homogeneity obtained thus far are due to misspecification of the functional form and not due to incorrectness of the homogeneity assumption.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: main text
Download Restriction: no

Paper provided by Boston College Department of Economics in its series Boston College Working Papers in Economics with number 749.

in new window

Date of creation: 24 Sep 2009
Handle: RePEc:boc:bocoec:749
Contact details of provider: Postal:
Boston College, 140 Commonwealth Avenue, Chestnut Hill MA 02467 USA

Phone: 617-552-3670
Fax: +1-617-552-2308
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Ait-Sahalia, Yacine & Bickel, Peter J. & Stoker, Thomas M., 2001. "Goodness-of-fit tests for kernel regression with an application to option implied volatilities," Journal of Econometrics, Elsevier, vol. 105(2), pages 363-412, December.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:boc:bocoec:749. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.