IDEAS home Printed from https://ideas.repec.org/p/bie/wpaper/590.html
   My bibliography  Save this paper

Reflected Solutions of BSDEs Driven by $\textit{G}$-Brownian Motion

Author

Listed:
  • Li, Hanwu

    (Center for Mathematical Economics, Bielefeld University)

  • Peng, Shige

    (Center for Mathematical Economics, Bielefeld University)

  • Soumana Hima, Abdoulaye

    (Center for Mathematical Economics, Bielefeld University)

Abstract

In this paper, we study the reflected solutions of one-dimensional backward stochastic differential equations driven by *G*-Brownian motion (RGBSDE for short). The reflection keeps the solution above a given stochastic process. In order to derive the uniqueness of reflected *G*-BSDEs, we apply a \martingale condition" instead of the Skorohod condition. Similar to the classical case, we prove the existence by approximation via penalization.

Suggested Citation

  • Li, Hanwu & Peng, Shige & Soumana Hima, Abdoulaye, 2018. "Reflected Solutions of BSDEs Driven by $\textit{G}$-Brownian Motion," Center for Mathematical Economics Working Papers 590, Center for Mathematical Economics, Bielefeld University.
  • Handle: RePEc:bie:wpaper:590
    as

    Download full text from publisher

    File URL: https://pub.uni-bielefeld.de/download/2930428/2930429
    File Function: First Version, 2017
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Matoussi, Anis, 1997. "Reflected solutions of backward stochastic differential equations with continuous coefficient," Statistics & Probability Letters, Elsevier, vol. 34(4), pages 347-354, June.
    2. Lepeltier, J.-P. & Xu, M., 2005. "Penalization method for reflected backward stochastic differential equations with one r.c.l.l. barrier," Statistics & Probability Letters, Elsevier, vol. 75(1), pages 58-66, November.
    3. Hu, Mingshang & Ji, Shaolin & Peng, Shige & Song, Yongsheng, 2014. "Comparison theorem, Feynman–Kac formula and Girsanov transformation for BSDEs driven by G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 124(2), pages 1170-1195.
    4. Hamadène, S. & Lepeltier, J. -P., 2000. "Reflected BSDEs and mixed game problem," Stochastic Processes and their Applications, Elsevier, vol. 85(2), pages 177-188, February.
    5. Peng, Shige, 2008. "Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation," Stochastic Processes and their Applications, Elsevier, vol. 118(12), pages 2223-2253, December.
    6. Possamaï, Dylan, 2013. "Second order backward stochastic differential equations under a monotonicity condition," Stochastic Processes and their Applications, Elsevier, vol. 123(5), pages 1521-1545.
    7. Joerg Vorbrink, 2010. "Financial markets with volatility uncertainty," Papers 1012.1535, arXiv.org, revised Dec 2010.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choukroun, Sébastien & Cosso, Andrea & Pham, Huyên, 2015. "Reflected BSDEs with nonpositive jumps, and controller-and-stopper games," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 597-633.
    2. Li, Hanwu & Peng, Shige, 2020. "Reflected backward stochastic differential equation driven by G-Brownian motion with an upper obstacle," Stochastic Processes and their Applications, Elsevier, vol. 130(11), pages 6556-6579.
    3. Zhang, Wei & Jiang, Long, 2021. "Solutions of BSDEs with a kind of non-Lipschitz coefficients driven by G-Brownian motion," Statistics & Probability Letters, Elsevier, vol. 171(C).
    4. Hu, Ying & Lin, Yiqing & Soumana Hima, Abdoulaye, 2018. "Quadratic backward stochastic differential equations driven by G-Brownian motion: Discrete solutions and approximation," Stochastic Processes and their Applications, Elsevier, vol. 128(11), pages 3724-3750.
    5. Park, Kyunghyun & Wong, Hoi Ying & Yan, Tingjin, 2023. "Robust retirement and life insurance with inflation risk and model ambiguity," Insurance: Mathematics and Economics, Elsevier, vol. 110(C), pages 1-30.
    6. Zhou, Qing & Ren, Yong, 2012. "Reflected backward stochastic differential equations with time delayed generators," Statistics & Probability Letters, Elsevier, vol. 82(5), pages 979-990.
    7. Larry G. Epstein & Shaolin Ji, 2013. "Ambiguous Volatility and Asset Pricing in Continuous Time," The Review of Financial Studies, Society for Financial Studies, vol. 26(7), pages 1740-1786.
    8. Hu, Ying & Tang, Shanjian & Wang, Falei, 2022. "Quadratic G-BSDEs with convex generators and unbounded terminal conditions," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 363-390.
    9. Song, Yongsheng, 2019. "Properties of G-martingales with finite variation and the application to G-Sobolev spaces," Stochastic Processes and their Applications, Elsevier, vol. 129(6), pages 2066-2085.
    10. Hanwu Li & Yongsheng Song, 2021. "Backward Stochastic Differential Equations Driven by G-Brownian Motion with Double Reflections," Journal of Theoretical Probability, Springer, vol. 34(4), pages 2285-2314, December.
    11. Hu, Mingshang & Wang, Falei & Zheng, Guoqiang, 2016. "Quasi-continuous random variables and processes under the G-expectation framework," Stochastic Processes and their Applications, Elsevier, vol. 126(8), pages 2367-2387.
    12. Falei Wang & Guoqiang Zheng, 2021. "Backward Stochastic Differential Equations Driven by G-Brownian Motion with Uniformly Continuous Generators," Journal of Theoretical Probability, Springer, vol. 34(2), pages 660-681, June.
    13. Hu, Mingshang & Ji, Xiaojun & Liu, Guomin, 2021. "On the strong Markov property for stochastic differential equations driven by G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 417-453.
    14. Ren, Yong & Hu, Lanying, 2007. "Reflected backward stochastic differential equations driven by Lévy processes," Statistics & Probability Letters, Elsevier, vol. 77(15), pages 1559-1566, September.
    15. He, Wei, 2024. "Multi-dimensional mean-reflected BSDEs driven by G-Brownian motion with time-varying non-Lipschitz coefficients," Statistics & Probability Letters, Elsevier, vol. 206(C).
    16. Huang, Zongyuan & Lepeltier, Jean-Pierre & Wu, Zhen, 2010. "Reflected forward-backward stochastic differential equations with continuous monotone coefficients," Statistics & Probability Letters, Elsevier, vol. 80(21-22), pages 1569-1576, November.
    17. Shige Peng & Huilin Zhang, 2022. "Wong–Zakai Approximation for Stochastic Differential Equations Driven by G-Brownian Motion," Journal of Theoretical Probability, Springer, vol. 35(1), pages 410-425, March.
    18. Hu, Mingshang & Wang, Falei, 2021. "Probabilistic approach to singular perturbations of viscosity solutions to nonlinear parabolic PDEs," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 139-171.
    19. Nie, Tianyang & Rutkowski, Marek, 2014. "Multi-player stopping games with redistribution of payoffs and BSDEs with oblique reflection," Stochastic Processes and their Applications, Elsevier, vol. 124(8), pages 2672-2698.
    20. Hu, Mingshang & Ji, Shaolin, 2017. "Dynamic programming principle for stochastic recursive optimal control problem driven by a G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 127(1), pages 107-134.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bie:wpaper:590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bettina Weingarten (email available below). General contact details of provider: https://edirc.repec.org/data/imbiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.