IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v126y2016i8p2367-2387.html
   My bibliography  Save this article

Quasi-continuous random variables and processes under the G-expectation framework

Author

Listed:
  • Hu, Mingshang
  • Wang, Falei
  • Zheng, Guoqiang

Abstract

In this paper, we first use PDE techniques and probabilistic methods to identify a kind of quasi-continuous random variables. Then we give a characterization of the G-integrable processes and get a kind of quasi-continuous processes by Krylov’s estimates. This result is useful for the development of G-stochastic analysis theory. Moreover, it also provides a tool for the study of the non-Markovian Itô processes.

Suggested Citation

  • Hu, Mingshang & Wang, Falei & Zheng, Guoqiang, 2016. "Quasi-continuous random variables and processes under the G-expectation framework," Stochastic Processes and their Applications, Elsevier, vol. 126(8), pages 2367-2387.
  • Handle: RePEc:eee:spapps:v:126:y:2016:i:8:p:2367-2387
    DOI: 10.1016/j.spa.2016.02.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414916000247
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2016.02.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Xinpeng & Peng, Shige, 2011. "Stopping times and related Itô's calculus with G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 121(7), pages 1492-1508, July.
    2. Hu, Mingshang & Ji, Shaolin & Peng, Shige & Song, Yongsheng, 2014. "Comparison theorem, Feynman–Kac formula and Girsanov transformation for BSDEs driven by G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 124(2), pages 1170-1195.
    3. Hu, Mingshang & Ji, Shaolin & Peng, Shige & Song, Yongsheng, 2014. "Backward stochastic differential equations driven by G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 759-784.
    4. Peng, Shige, 2008. "Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation," Stochastic Processes and their Applications, Elsevier, vol. 118(12), pages 2223-2253, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Ying & Tang, Shanjian & Wang, Falei, 2022. "Quadratic G-BSDEs with convex generators and unbounded terminal conditions," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 363-390.
    2. He, Wei, 2024. "Multi-dimensional mean-reflected BSDEs driven by G-Brownian motion with time-varying non-Lipschitz coefficients," Statistics & Probability Letters, Elsevier, vol. 206(C).
    3. Hölzermann, Julian & Lin, Qian, 2019. "Term Structure Modeling under Volatility Uncertainty: A Forward Rate Model driven by G-Brownian Motion," Center for Mathematical Economics Working Papers 613, Center for Mathematical Economics, Bielefeld University.
    4. Liu, Guomin, 2020. "Exit times for semimartingales under nonlinear expectation," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7338-7362.
    5. Zhang, Wei & Jiang, Long, 2021. "Solutions of BSDEs with a kind of non-Lipschitz coefficients driven by G-Brownian motion," Statistics & Probability Letters, Elsevier, vol. 171(C).
    6. Hu, Ying & Lin, Yiqing & Soumana Hima, Abdoulaye, 2018. "Quadratic backward stochastic differential equations driven by G-Brownian motion: Discrete solutions and approximation," Stochastic Processes and their Applications, Elsevier, vol. 128(11), pages 3724-3750.
    7. Shengqiu Sun, 2022. "Backward Stochastic Differential Equations Driven by G-Brownian Motion with Uniformly Continuous Coefficients in (y, z)," Journal of Theoretical Probability, Springer, vol. 35(1), pages 370-409, March.
    8. Falei Wang & Guoqiang Zheng, 2021. "Backward Stochastic Differential Equations Driven by G-Brownian Motion with Uniformly Continuous Generators," Journal of Theoretical Probability, Springer, vol. 34(2), pages 660-681, June.
    9. Yin, Wensheng & Cao, Jinde, 2021. "On stability of large-scale G-SDEs: A decomposition approach," Applied Mathematics and Computation, Elsevier, vol. 388(C).
    10. Julian Holzermann, 2019. "Term Structure Modeling under Volatility Uncertainty," Papers 1904.02930, arXiv.org, revised Sep 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Ying & Lin, Yiqing & Soumana Hima, Abdoulaye, 2018. "Quadratic backward stochastic differential equations driven by G-Brownian motion: Discrete solutions and approximation," Stochastic Processes and their Applications, Elsevier, vol. 128(11), pages 3724-3750.
    2. Li, Hanwu & Peng, Shige, 2020. "Reflected backward stochastic differential equation driven by G-Brownian motion with an upper obstacle," Stochastic Processes and their Applications, Elsevier, vol. 130(11), pages 6556-6579.
    3. Zhang, Wei & Jiang, Long, 2021. "Solutions of BSDEs with a kind of non-Lipschitz coefficients driven by G-Brownian motion," Statistics & Probability Letters, Elsevier, vol. 171(C).
    4. Park, Kyunghyun & Wong, Hoi Ying & Yan, Tingjin, 2023. "Robust retirement and life insurance with inflation risk and model ambiguity," Insurance: Mathematics and Economics, Elsevier, vol. 110(C), pages 1-30.
    5. Hu, Ying & Tang, Shanjian & Wang, Falei, 2022. "Quadratic G-BSDEs with convex generators and unbounded terminal conditions," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 363-390.
    6. Hanwu Li & Yongsheng Song, 2021. "Backward Stochastic Differential Equations Driven by G-Brownian Motion with Double Reflections," Journal of Theoretical Probability, Springer, vol. 34(4), pages 2285-2314, December.
    7. Falei Wang & Guoqiang Zheng, 2021. "Backward Stochastic Differential Equations Driven by G-Brownian Motion with Uniformly Continuous Generators," Journal of Theoretical Probability, Springer, vol. 34(2), pages 660-681, June.
    8. Hu, Mingshang & Ji, Xiaojun & Liu, Guomin, 2021. "On the strong Markov property for stochastic differential equations driven by G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 417-453.
    9. Hu, Mingshang & Wang, Falei, 2021. "Probabilistic approach to singular perturbations of viscosity solutions to nonlinear parabolic PDEs," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 139-171.
    10. Hu, Mingshang & Ji, Shaolin, 2017. "Dynamic programming principle for stochastic recursive optimal control problem driven by a G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 127(1), pages 107-134.
    11. Song, Yongsheng, 2019. "Properties of G-martingales with finite variation and the application to G-Sobolev spaces," Stochastic Processes and their Applications, Elsevier, vol. 129(6), pages 2066-2085.
    12. Wang, Bingjun & Yuan, Mingxia, 2019. "Forward-backward stochastic differential equations driven by G-Brownian motion," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 39-47.
    13. Shengqiu Sun, 2022. "Backward Stochastic Differential Equations Driven by G-Brownian Motion with Uniformly Continuous Coefficients in (y, z)," Journal of Theoretical Probability, Springer, vol. 35(1), pages 370-409, March.
    14. Li, Hanwu, 2019. "Optimal stopping under $\textit{G}$-expectation," Center for Mathematical Economics Working Papers 606, Center for Mathematical Economics, Bielefeld University.
    15. Liu, Guomin, 2020. "Exit times for semimartingales under nonlinear expectation," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7338-7362.
    16. Hafida Bouanani & Omar Kebiri & Carsten Hartmann & Amel Redjil, 2024. "Optimal Relaxed Control for a Decoupled G-FBSDE," Journal of Optimization Theory and Applications, Springer, vol. 202(3), pages 1027-1059, September.
    17. Xiao, Guanli & Wang, JinRong & O’Regan, Donal, 2020. "Existence, uniqueness and continuous dependence of solutions to conformable stochastic differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    18. Shige Peng & Huilin Zhang, 2022. "Wong–Zakai Approximation for Stochastic Differential Equations Driven by G-Brownian Motion," Journal of Theoretical Probability, Springer, vol. 35(1), pages 410-425, March.
    19. Erhan Bayraktar & Alexander Munk, 2014. "Comparing the $G$-Normal Distribution to its Classical Counterpart," Papers 1407.5139, arXiv.org, revised Dec 2014.
    20. Li, Hanwu & Peng, Shige & Soumana Hima, Abdoulaye, 2018. "Reflected Solutions of BSDEs Driven by $\textit{G}$-Brownian Motion," Center for Mathematical Economics Working Papers 590, Center for Mathematical Economics, Bielefeld University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:126:y:2016:i:8:p:2367-2387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.