IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v37y2024i3d10.1007_s10959-024-01334-4.html
   My bibliography  Save this article

Multi-dimensional Reflected Backward Stochastic Differential Equations Driven by G-Brownian Motion with Diagonal Generators

Author

Listed:
  • Hanwu Li

    (Shandong University
    Shandong University)

  • Guomin Liu

    (Nankai University)

Abstract

We consider the well-posedness problem of multi-dimensional reflected backward stochastic differential equations driven by G-Brownian motion (G-BSDEs) with diagonal generators. Two methods, including the penalization method and the Picard iteration argument, are provided to prove the existence and uniqueness of the solutions. We also study its connection with the obstacle problem of a system of fully nonlinear PDEs.

Suggested Citation

  • Hanwu Li & Guomin Liu, 2024. "Multi-dimensional Reflected Backward Stochastic Differential Equations Driven by G-Brownian Motion with Diagonal Generators," Journal of Theoretical Probability, Springer, vol. 37(3), pages 2615-2645, September.
  • Handle: RePEc:spr:jotpro:v:37:y:2024:i:3:d:10.1007_s10959-024-01334-4
    DOI: 10.1007/s10959-024-01334-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-024-01334-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-024-01334-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Lepeltier, J.-P. & Xu, M., 2005. "Penalization method for reflected backward stochastic differential equations with one r.c.l.l. barrier," Statistics & Probability Letters, Elsevier, vol. 75(1), pages 58-66, November.
    2. Hu, Mingshang & Ji, Shaolin & Peng, Shige & Song, Yongsheng, 2014. "Comparison theorem, Feynman–Kac formula and Girsanov transformation for BSDEs driven by G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 124(2), pages 1170-1195.
    3. Miryana Grigorova & Peter Imkeller & Elias Offen & Youssef Ouknine & Marie-Claire Quenez, 2017. "Reflected BSDEs when the obstacle is not right-continuous and optimal stopping," Post-Print hal-01141801, HAL.
    4. Hu, Mingshang & Ji, Shaolin & Peng, Shige & Song, Yongsheng, 2014. "Backward stochastic differential equations driven by G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 759-784.
    5. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    6. Peng, Shige, 2008. "Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation," Stochastic Processes and their Applications, Elsevier, vol. 118(12), pages 2223-2253, December.
    7. Miryana Grigorova & Peter Imkeller & Elias Offen & Youssef Ouknine & Marie-Claire Quenez, 2015. "Reflected BSDEs when the obstacle is not right-continuous and optimal stopping," Papers 1504.06094, arXiv.org, revised May 2017.
    8. Hanwu Li & Yongsheng Song, 2021. "Backward Stochastic Differential Equations Driven by G-Brownian Motion with Double Reflections," Journal of Theoretical Probability, Springer, vol. 34(4), pages 2285-2314, December.
    9. Hu, Ying & Tang, Shanjian & Wang, Falei, 2022. "Quadratic G-BSDEs with convex generators and unbounded terminal conditions," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 363-390.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Ying & Tang, Shanjian & Wang, Falei, 2022. "Quadratic G-BSDEs with convex generators and unbounded terminal conditions," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 363-390.
    2. Hanwu Li & Yongsheng Song, 2021. "Backward Stochastic Differential Equations Driven by G-Brownian Motion with Double Reflections," Journal of Theoretical Probability, Springer, vol. 34(4), pages 2285-2314, December.
    3. Shengqiu Sun, 2024. "Doubly Reflected Backward Stochastic Differential Equations Driven by G-Brownian Motion with Uniformly Continuous Coefficients," Journal of Theoretical Probability, Springer, vol. 37(4), pages 2886-2911, November.
    4. Hu, Mingshang & Ji, Shaolin, 2017. "Dynamic programming principle for stochastic recursive optimal control problem driven by a G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 127(1), pages 107-134.
    5. Marzougue, Mohamed, 2021. "Monotonic limit theorem for BSDEs with regulated trajectories," Statistics & Probability Letters, Elsevier, vol. 176(C).
    6. He, Wei, 2024. "Multi-dimensional mean-reflected BSDEs driven by G-Brownian motion with time-varying non-Lipschitz coefficients," Statistics & Probability Letters, Elsevier, vol. 206(C).
    7. Sun, Shengqiu, 2025. "Mean-field forward–backward stochastic differential equations driven by G-Brownian motion," Statistics & Probability Letters, Elsevier, vol. 223(C).
    8. Li, Hanwu & Peng, Shige, 2020. "Reflected backward stochastic differential equation driven by G-Brownian motion with an upper obstacle," Stochastic Processes and their Applications, Elsevier, vol. 130(11), pages 6556-6579.
    9. Shengqiu Sun, 2022. "Backward Stochastic Differential Equations Driven by G-Brownian Motion with Uniformly Continuous Coefficients in (y, z)," Journal of Theoretical Probability, Springer, vol. 35(1), pages 370-409, March.
    10. Zhang, Wei & Jiang, Long, 2021. "Solutions of BSDEs with a kind of non-Lipschitz coefficients driven by G-Brownian motion," Statistics & Probability Letters, Elsevier, vol. 171(C).
    11. Li, Hanwu & Song, Yongsheng, 2025. "Backward Stochastic Differential Equations Driven by $\textit{G}$-Brownian Motion with Double Reflections," Center for Mathematical Economics Working Papers 717, Center for Mathematical Economics, Bielefeld University.
    12. Park, Kyunghyun & Wong, Hoi Ying & Yan, Tingjin, 2023. "Robust retirement and life insurance with inflation risk and model ambiguity," Insurance: Mathematics and Economics, Elsevier, vol. 110(C), pages 1-30.
    13. Hu, Mingshang & Wang, Falei & Zheng, Guoqiang, 2016. "Quasi-continuous random variables and processes under the G-expectation framework," Stochastic Processes and their Applications, Elsevier, vol. 126(8), pages 2367-2387.
    14. Falei Wang & Guoqiang Zheng, 2021. "Backward Stochastic Differential Equations Driven by G-Brownian Motion with Uniformly Continuous Generators," Journal of Theoretical Probability, Springer, vol. 34(2), pages 660-681, June.
    15. Hu, Mingshang & Ji, Xiaojun & Liu, Guomin, 2021. "On the strong Markov property for stochastic differential equations driven by G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 417-453.
    16. Hafida Bouanani & Omar Kebiri & Carsten Hartmann & Amel Redjil, 2024. "Optimal Relaxed Control for a Decoupled G-FBSDE," Journal of Optimization Theory and Applications, Springer, vol. 202(3), pages 1027-1059, September.
    17. Hu, Mingshang & Wang, Falei, 2021. "Probabilistic approach to singular perturbations of viscosity solutions to nonlinear parabolic PDEs," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 139-171.
    18. Miryana Grigorova & Marie-Claire Quenez & Agnès Sulem, 2020. "European options in a non-linear incomplete market model with default," Post-Print hal-02025833, HAL.
    19. Grigorova, Miryana & Quenez, Marie-Claire & Sulem, Agnès, 2019. "Superhedging prices of European and American options in a non-linear incomplete market with default," Center for Mathematical Economics Working Papers 607, Center for Mathematical Economics, Bielefeld University.
    20. Li, Hanwu & Peng, Shige & Soumana Hima, Abdoulaye, 2018. "Reflected Solutions of BSDEs Driven by $\textit{G}$-Brownian Motion," Center for Mathematical Economics Working Papers 590, Center for Mathematical Economics, Bielefeld University.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:37:y:2024:i:3:d:10.1007_s10959-024-01334-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.