IDEAS home Printed from https://ideas.repec.org/p/bep/mchbio/1025.html
   My bibliography  Save this paper

Multiple Imputation For Interval Censored Data With Auxiliary Variables

Author

Listed:
  • Chiu-Hsieh Hsu

    (Arizona Cancer Center)

  • Jeremy Taylor

    (University of Michigan)

  • Susan Murray

    (University of Michigan Biostatistics)

Abstract

We propose a nonparametric multiple imputation scheme, NPMLE imputation, for the analysis of interval censored survival data. Features of the method are that it converts interval-censored data problems to complete data or right censored data problems to which many standard approaches can be used, and the measures of uncertainty are easily obtained. In addition to the event time of primary interest, there are frequently other auxiliary variables that are associated with the event time. For the goal of estimating the marginal survival distribution, these auxiliary variables may provide some additional information about the event time for the interval censored observations. We extend the imputation methods to incorporate information from auxiliary variables with potentially complex structures. To conduct the imputation, we use a working failure-time proportional hazards model to define an imputing risk set for each censored observations. The imputation schemes consist of using the data in the imputing risk set to create an exact event time for each interval censored observation. In simulation studies we show that the use of multiple imputation methods can improve the efficiency of estimators and reduce the effect of missing visits when compared to simpler approaches. We apply the approach to cytomegalovirus shedding data from an AIDS clinical trial, in which CD4 count is the auxiliary variable.

Suggested Citation

  • Chiu-Hsieh Hsu & Jeremy Taylor & Susan Murray, 2004. "Multiple Imputation For Interval Censored Data With Auxiliary Variables," The University of Michigan Department of Biostatistics Working Paper Series 1025, Berkeley Electronic Press.
  • Handle: RePEc:bep:mchbio:1025
    Note: oai:bepress.com:umichbiostat-1025
    as

    Download full text from publisher

    File URL: http://www.bepress.com/cgi/viewcontent.cgi?article=1025&context=umichbiostat
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Taylor, Jeremy M. G. & Murray, Susan & Hsu, Chiu-Hsieh, 2002. "Survival estimation and testing via multiple imputation," Statistics & Probability Letters, Elsevier, vol. 58(3), pages 221-232, July.
    2. Daniel F. Heitjan & Roderick J. A. Little, 1991. "Multiple Imputation for the Fatal Accident Reporting System," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 40(1), pages 13-29, March.
    3. Wei Pan, 2000. "A Multiple Imputation Approach to Cox Regression with Interval-Censored Data," Biometrics, The International Biometric Society, vol. 56(1), pages 199-203, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qingning Zhou & Jianwen Cai & Haibo Zhou, 2018. "Outcome†dependent sampling with interval†censored failure time data," Biometrics, The International Biometric Society, vol. 74(1), pages 58-67, March.
    2. Brownstone, David, 1997. "Multiple Imputation Methodology for Missing Data, Non-Random Response, and Panel Attrition," University of California Transportation Center, Working Papers qt2zd6w6hh, University of California Transportation Center.
    3. Chen, Ling & Sun, Jianguo, 2010. "A multiple imputation approach to the analysis of interval-censored failure time data with the additive hazards model," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 1109-1116, April.
    4. Prabhashi W. Withana Gamage & Christopher S. McMahan & Lianming Wang, 2023. "A flexible parametric approach for analyzing arbitrarily censored data that are potentially subject to left truncation under the proportional hazards model," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(1), pages 188-212, January.
    5. Chaton, Corinne & Gouraud, Alexandre, 2020. "Simulation of fuel poverty in France," Energy Policy, Elsevier, vol. 140(C).
    6. Chiu-Hsieh Hsu & Jeremy Taylor & Susan Murray, 2004. "Survival Analysis USing Auxiliary Variables Via Nonparametric Multiple Imputation," The University of Michigan Department of Biostatistics Working Paper Series 1026, Berkeley Electronic Press.
    7. Gabriele B. Durrant & Chris Skinner, 2006. "Using data augmentation to correct for non‐ignorable non‐response when surrogate data are available: an application to the distribution of hourly pay," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(3), pages 605-623, July.
    8. Lana Salih Joelsson & Evangelia Elenis & Kjell Wanggren & Anna Berglund & Anastasia N Iliadou & Carolyn E Cesta & Sunni L Mumford & Richard White & Tanja Tydén & Alkistis Skalkidou, 2019. "Investigating the effect of lifestyle risk factors upon number of aspirated and mature oocytes in in vitro fertilization cycles: Interaction with antral follicle count," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-15, August.
    9. Shirin Moghaddam & John Newell & John Hinde, 2022. "A Bayesian Approach for Imputation of Censored Survival Data," Stats, MDPI, vol. 5(1), pages 1-19, January.
    10. Min Zhang & Marie Davidian, 2008. "“Smooth” Semiparametric Regression Analysis for Arbitrarily Censored Time-to-Event Data," Biometrics, The International Biometric Society, vol. 64(2), pages 567-576, June.
    11. Vicki Freedman & Douglas Wolf, 1995. "A case study on the use of multiple imputation," Demography, Springer;Population Association of America (PAA), vol. 32(3), pages 459-470, August.
    12. Marco Di Zio & Ugo Guarnera, 2008. "A multiple imputation method for non-Gaussian data," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 75-90.
    13. Els Goetghebeur & Louise Ryan, 2000. "Semiparametric Regression Analysis of Interval-Censored Data," Biometrics, The International Biometric Society, vol. 56(4), pages 1139-1144, December.
    14. Jue Hou & Christina D. Chambers & Ronghui Xu, 2018. "A nonparametric maximum likelihood approach for survival data with observed cured subjects, left truncation and right-censoring," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(4), pages 612-651, October.
    15. Gurprit Grover & Vinay K. Gupta, 2015. "Multiple imputation of censored survival data in the presence of missing covariates using restricted mean survival time," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(4), pages 817-827, April.
    16. Daniel McNeish, 2017. "Missing data methods for arbitrary missingness with small samples," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(1), pages 24-39, January.
    17. Rebecca R. Andridge & Roderick J. A. Little, 2010. "A Review of Hot Deck Imputation for Survey Non‐response," International Statistical Review, International Statistical Institute, vol. 78(1), pages 40-64, April.
    18. Scolas, Sylvie & El Ghouch, Anouar & Legrand, Catherine, 2016. "The SNP representation in mixture cure models with interval-censoring: estimation and goodness-of-fit testing," LIDAM Discussion Papers ISBA 2016049, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    19. Zhang, Yue & Zhang, Bin, 2018. "Semiparametric spatial model for interval-censored data with time-varying covariate effects," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 146-156.
    20. Zhang, Xinyan & Sun, Jianguo, 2010. "Regression analysis of clustered interval-censored failure time data with informative cluster size," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1817-1823, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bep:mchbio:1025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.bepress.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.