IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v209y2025ics0167947325000532.html
   My bibliography  Save this article

A multiple imputation approach for flexible modelling of interval-censored data with missing and censored covariates

Author

Listed:
  • Lou, Yichen
  • Ma, Yuqing
  • Xiang, Liming
  • Sun, Jianguo

Abstract

This paper discusses regression analysis of interval-censored failure time data that commonly occur in biomedical studies among others. For the situation, the failure event of interest is known only to occur within an interval instead of being observed exactly. In addition to interval censoring on the failure time of interest, sometimes covariates may be missing or suffer censoring, which can bring extra theoretical and computational challenges for the regression analysis. To deal with such data, we propose a novel multiple imputation approach with the use of the rejection sampling under a class of semiparametric transformation models. The proposed method is flexible and can lead to more efficient estimation than the existing methods, and the resulting estimators are shown to be consistent and asymptotically normal. An extensive simulation study is conducted and demonstrates that the proposed approach works well in practice. Finally, we apply the proposed approach to a set of real data on Alzheimer's disease that motivated this study.

Suggested Citation

  • Lou, Yichen & Ma, Yuqing & Xiang, Liming & Sun, Jianguo, 2025. "A multiple imputation approach for flexible modelling of interval-censored data with missing and censored covariates," Computational Statistics & Data Analysis, Elsevier, vol. 209(C).
  • Handle: RePEc:eee:csdana:v:209:y:2025:i:c:s0167947325000532
    DOI: 10.1016/j.csda.2025.108177
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947325000532
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2025.108177?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Bernhardt, Paul W. & Wang, Huixia Judy & Zhang, Daowen, 2014. "Flexible modeling of survival data with covariates subject to detection limits via multiple imputation," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 81-91.
    2. Ruiwen Zhou & Huiqiong Li & Jianguo Sun & Niansheng Tang, 2022. "A new approach to estimation of the proportional hazards model based on interval-censored data with missing covariates," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(3), pages 335-355, July.
    3. Joseph G. Ibrahim & Ming-Hui Chen & Stuart R. Lipsitz, 1999. "Monte Carlo EM for Missing Covariates in Parametric Regression Models," Biometrics, The International Biometric Society, vol. 55(2), pages 591-596, June.
    4. Donglin Zeng & Lu Mao & D. Y. Lin, 2016. "Maximum likelihood estimation for semiparametric transformation models with interval-censored data," Biometrika, Biometrika Trust, vol. 103(2), pages 253-271.
    5. Qingning Zhou & Tao Hu & Jianguo Sun, 2017. "A Sieve Semiparametric Maximum Likelihood Approach for Regression Analysis of Bivariate Interval-Censored Failure Time Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 664-672, April.
    6. Hu, Tao & Xiang, Liming, 2016. "Partially linear transformation cure models for interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 257-269.
    7. Zhang, Zhigang & Zhao, Yichuan, 2013. "Empirical likelihood for linear transformation models with interval-censored failure time data," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 398-409.
    8. Qi, Lihong & Wang, C.Y. & Prentice, Ross L., 2005. "Weighted Estimators for Proportional Hazards Regression With Missing Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1250-1263, December.
    9. Fengting Yi & Niansheng Tang & Jianguo Sun, 2022. "Simultaneous variable selection and estimation for joint models of longitudinal and failure time data with interval censoring," Biometrics, The International Biometric Society, vol. 78(1), pages 151-164, March.
    10. Tonghui Yu & Liming Xiang & Huixia Judy Wang, 2021. "Quantile regression for survival data with covariates subject to detection limits," Biometrics, The International Biometric Society, vol. 77(2), pages 610-621, June.
    11. Xiaoxi Liu & Donglin Zeng, 2013. "Variable selection in semiparametric transformation models for right-censored data," Biometrika, Biometrika Trust, vol. 100(4), pages 859-876.
    12. Shengchun Kong & Bin Nan, 2016. "Semiparametric approach to regression with a covariate subject to a detection limit," Biometrika, Biometrika Trust, vol. 103(1), pages 161-174.
    13. Xiaodong Luo & Wei Yann Tsai & Qiang Xu, 2009. "Pseudo-partial likelihood estimators for the Cox regression model with missing covariates," Biometrika, Biometrika Trust, vol. 96(3), pages 617-633.
    14. Daniel F. Heitjan & Roderick J. A. Little, 1991. "Multiple Imputation for the Fatal Accident Reporting System," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 40(1), pages 13-29, March.
    15. Huiyun Wu & Qingxia Chen & Lorraine B. Ware & Tatsuki Koyama, 2012. "A Bayesian approach for generalized linear models with explanatory biomarker measurement variables subject to detection limit: an application to acute lung injury," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(8), pages 1733-1747, March.
    16. Jon Arni Steingrimsson & Robert L. Strawderman, 2017. "Estimation in the Semiparametric Accelerated Failure Time Model With Missing Covariates: Improving Efficiency Through Augmentation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1221-1235, July.
    17. Chi-Chung Wen & Chien-Tai Lin, 2011. "Analysis of Current Status Data with Missing Covariates," Biometrics, The International Biometric Society, vol. 67(3), pages 760-769, September.
    18. Na Hu & Xuerong Chen & Jianguo Sun, 2015. "Regression Analysis of Length-biased and Right-censored Failure Time Data with Missing Covariates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 438-452, June.
    19. Xu, Qiang & Paik, Myunghee Cho & Luo, Xiaodong & Tsai, Wei-Yann, 2009. "Reweighting Estimators for Cox Regression With Missing Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1155-1167.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Mingyue & Li, Huiqiong & Sun, Jianguo, 2021. "Regression analysis of censored data with nonignorable missing covariates and application to Alzheimer Disease," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    2. Jon Arni Steingrimsson & Robert L. Strawderman, 2017. "Estimation in the Semiparametric Accelerated Failure Time Model With Missing Covariates: Improving Efficiency Through Augmentation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1221-1235, July.
    3. Shanshan Li & Yang Ning, 2015. "Estimation of covariate‐specific time‐dependent ROC curves in the presence of missing biomarkers," Biometrics, The International Biometric Society, vol. 71(3), pages 666-676, September.
    4. Tian Tian & Jianguo Sun, 2024. "Variable Selection for Nonlinear Covariate Effects with Interval-Censored Failure Time Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(1), pages 185-202, April.
    5. Xiaolin Chen & Jianwen Cai, 2018. "Reweighted estimators for additive hazard model with censoring indicators missing at random," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(2), pages 224-249, April.
    6. Liu, Wenting & Li, Huiqiong & Tang, Niansheng & Lyu, Jun, 2024. "Variational Bayesian approach for analyzing interval-censored data under the proportional hazards model," Computational Statistics & Data Analysis, Elsevier, vol. 195(C).
    7. Fei Gao & Kwun Chuen Gary Chan, 2024. "Efficient Estimation of Semiparametric Transformation Model with Interval-Censored Data in Two-Phase Cohort Studies," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(1), pages 203-220, April.
    8. Na Hu & Xuerong Chen & Jianguo Sun, 2015. "Regression Analysis of Length-biased and Right-censored Failure Time Data with Missing Covariates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 438-452, June.
    9. Ruiwen Zhou & Huiqiong Li & Jianguo Sun & Niansheng Tang, 2022. "A new approach to estimation of the proportional hazards model based on interval-censored data with missing covariates," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(3), pages 335-355, July.
    10. Liuquan Sun & Shuwei Li & Lianming Wang & Xinyuan Song & Xuemei Sui, 2022. "Simultaneous variable selection in regression analysis of multivariate interval‐censored data," Biometrics, The International Biometric Society, vol. 78(4), pages 1402-1413, December.
    11. Torben Martinussen & Klaus K. Holst & Thomas H. Scheike, 2016. "Cox regression with missing covariate data using a modified partial likelihood method," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(4), pages 570-588, October.
    12. Norah Alyabs & Sy Han Chiou, 2022. "The Missing Indicator Approach for Accelerated Failure Time Model with Covariates Subject to Limits of Detection," Stats, MDPI, vol. 5(2), pages 1-13, May.
    13. Li, Shuwei & Hu, Tao & Zhao, Xingqiu & Sun, Jianguo, 2019. "A class of semiparametric transformation cure models for interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 153-165.
    14. Xi Ning & Yinghao Pan & Yanqing Sun & Peter B. Gilbert, 2023. "A semiparametric Cox–Aalen transformation model with censored data," Biometrics, The International Biometric Society, vol. 79(4), pages 3111-3125, December.
    15. Omar Vazquez & Hayley M. Locke & Sharon X. Xie, 2025. "Analyzing Left-Truncated Samples with the Cox Model in the Presence of Missing Covariates," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 17(2), pages 555-574, July.
    16. Fei Gao & Donglin Zeng & Dan‐Yu Lin, 2018. "Semiparametric regression analysis of interval‐censored data with informative dropout," Biometrics, The International Biometric Society, vol. 74(4), pages 1213-1222, December.
    17. Jorge Alberto Achcar & Emerson Barili, 2024. "Semiparametric transformation model in presence of cure fraction: a hierarchical Bayesian approach assuming the unknown hazards as latent factors," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(2), pages 357-380, April.
    18. Qingning Zhou & Jianwen Cai & Haibo Zhou, 2018. "Outcome†dependent sampling with interval†censored failure time data," Biometrics, The International Biometric Society, vol. 74(1), pages 58-67, March.
    19. Yanyao Yi & Ting Ye & Menggang Yu & Jun Shao, 2020. "Cox regression with survival‐time‐dependent missing covariate values," Biometrics, The International Biometric Society, vol. 76(2), pages 460-471, June.
    20. Bernhardt Paul W., 2018. "Maximum Likelihood Estimation in a Semicontinuous Survival Model with Covariates Subject to Detection Limits," The International Journal of Biostatistics, De Gruyter, vol. 14(2), pages 1-16, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:209:y:2025:i:c:s0167947325000532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.