IDEAS home Printed from https://ideas.repec.org/p/bdr/temest/83.html
   My bibliography  Save this paper

Comparación De Métodos Para La Estimación De La Incertidumbre Del Valor En Riesgo

Author

Listed:
  • SANTIAGO GAMBA SANTAMARÍA

    ()

  • OSCAR FERNANDO JAULÍN MÉNDEZ

    ()

  • LUIS FERNANDO MELO VELANDIA

    ()

  • CARLOS ANDRÉS QUICAZÁN MORENO

    ()

Abstract

El Valor en Riesgo (VaR) es una medida de riesgo de mercado ampliamente usada por administradores de riesgo y autoridades regulatorias. Sin embargo, a pesar de que existe una gran variedad de metodologías propuestas en la literatura para la estimación del VaR, pocas de ellas dicen algo acerca de su distribución o sus intervalos de confianza. Este artículo compara distintas metodologías para calcular esos intervalos. Se utilizaron métodos basados en normalidad asintótica, teoría del valor extremo y bootstrap de submuestra. Usando simulaciones de Monte Carlo, se encontró que estas aproximaciones son válidas sólo para cuantiles altos. Particularmente, en términos de porcentaje de cobertura, estas metodologías presentan un buen desempeño para el VaR(99%) y un bajo desempeño para el VaR(95%) y el VaR(90%). En general, estos resultados se confirman a través de un ejercicio empírico aplicado a los bonos de deuda publica colombiana.

Suggested Citation

  • Santiago Gamba Santamaría & Oscar Fernando Jaulín Méndez & Luis Fernando Melo Velandia & Carlos Andrés Quicazán Moreno, 2015. "Comparación De Métodos Para La Estimación De La Incertidumbre Del Valor En Riesgo," Temas de Estabilidad Financiera 83, Banco de la Republica de Colombia.
  • Handle: RePEc:bdr:temest:83
    DOI: 10.32468/tef.83
    as

    Download full text from publisher

    File URL: https://doi.org/10.32468/tef.83
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Franck Moraux, 2011. "How valuable is your VaR? Large sample confidence intervals for normal VaR," Post-Print halshs-00600718, HAL.
    2. Hang Chan, Ngai & Deng, Shi-Jie & Peng, Liang & Xia, Zhendong, 2007. "Interval estimation of value-at-risk based on GARCH models with heavy-tailed innovations," Journal of Econometrics, Elsevier, vol. 137(2), pages 556-576, April.
    3. Gao, Feng & Song, Fengming, 2008. "ESTIMATION RISK IN GARCH VaR AND ES ESTIMATES," Econometric Theory, Cambridge University Press, vol. 24(5), pages 1404-1424, October.
    4. Francq, Christian & Zakoïan, Jean-Michel, 2015. "Risk-parameter estimation in volatility models," Journal of Econometrics, Elsevier, vol. 184(1), pages 158-173.
    5. Peter Hall & Qiwei Yao, 2003. "Data tilting for time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 425-442, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    2. Santiago Gamba-Santamaria & Oscar Fernando Jaulin-Mendez & Luis Fernando Melo-Velandia & Carlos Andrés Quicazán-Moreno, 2016. "Comparison of methods for estimating the uncertainty of value at risk," Studies in Economics and Finance, Emerald Group Publishing, vol. 33(4), pages 595-624, October.
    3. Spierdijk, Laura, 2016. "Confidence intervals for ARMA–GARCH Value-at-Risk: The case of heavy tails and skewness," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 545-559.
    4. Christophe Hurlin & Sébastien Laurent & Rogier Quaedvlieg & Stephan Smeekes, 2017. "Risk Measure Inference," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(4), pages 499-512, October.
    5. Francq, Christian & Zakoian, Jean-Michel, 2015. "Looking for efficient qml estimation of conditional value-at-risk at multiple risk levels," MPRA Paper 67195, University Library of Munich, Germany.
    6. Alexander Heinemann & Sean Telg, 2018. "A Residual Bootstrap for Conditional Expected Shortfall," Papers 1811.11557, arXiv.org.
    7. Nieto, María Rosa & Carmona-Benítez, Rafael Bernardo, 2018. "ARIMA + GARCH + Bootstrap forecasting method applied to the airline industry," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 1-8.
    8. Dominique Guegan & Bertrand K. Hassani & Kehan Li, 2016. "Measuring risks in the extreme tail: The extreme VaR and its confidence interval," Documents de travail du Centre d'Economie de la Sorbonne 16034rr, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Jan 2017.
    9. Ruiz, Esther & Nieto, María Rosa, 2008. "Measuring financial risk : comparison of alternative procedures to estimate VaR and ES," DES - Working Papers. Statistics and Econometrics. WS ws087326, Universidad Carlos III de Madrid. Departamento de Estadística.
    10. Christian Francq & Jean-Michel Zakoian, 2014. "Multi-level Conditional VaR Estimation in Dynamic Models," Working Papers 2014-01, Center for Research in Economics and Statistics.
    11. Eric Beutner & Alexander Heinemann & Stephan Smeekes, 2018. "A Residual Bootstrap for Conditional Value-at-Risk," Papers 1808.09125, arXiv.org, revised Jul 2020.
    12. Ruiz, Esther & Nieto, María Rosa, 2010. "Bootstrap prediction intervals for VaR and ES in the context of GARCH models," DES - Working Papers. Statistics and Econometrics. WS ws102814, Universidad Carlos III de Madrid. Departamento de Estadística.
    13. Dominique Guegan & Bertrand Hassani & Kehan Li, 2017. "Measuring risks in the extreme tail: The extreme VaR and its confidence interval," Post-Print halshs-01317391, HAL.
    14. Peter Hall & D. M. Titterington & Jing‐Hao Xue, 2009. "Tilting methods for assessing the influence of components in a classifier," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(4), pages 783-803, September.
    15. Zaichao Du & Juan Carlos Escanciano, 2017. "Backtesting Expected Shortfall: Accounting for Tail Risk," Management Science, INFORMS, vol. 63(4), pages 940-958, April.
    16. Eric Beutner & Alexander Heinemann & Stephan Smeekes, 2019. "A General Framework for Prediction in Time Series Models," Papers 1902.01622, arXiv.org.
    17. Cyril Coste & Raphaël Douady & Ilija Zovko, 2010. "The StressVaR: A New Risk Concept for Extreme Risk and Fund Allocation," Post-Print hal-02488591, HAL.
    18. Mohamed El Ghourabi & Christian Francq & Fedya Telmoudi, 2016. "Consistent Estimation of the Value at Risk When the Error Distribution of the Volatility Model is Misspecified," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 46-76, January.
    19. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2012. "When more is less: Using multiple constraints to reduce tail risk," Journal of Banking & Finance, Elsevier, vol. 36(10), pages 2693-2716.
    20. Boucher, Christophe M. & Daníelsson, Jón & Kouontchou, Patrick S. & Maillet, Bertrand B., 2014. "Risk models-at-risk," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 72-92.

    More about this item

    Keywords

    Valor en Riesgo; intervalos de confianza; data tilting; bootstrap de submuestra. Classification-JEL:C51; C52; C53; G32.;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bdr:temest:83. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Clorith Angélica Bahos-Olivera). General contact details of provider: https://edirc.repec.org/data/brcgvco.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.