IDEAS home Printed from https://ideas.repec.org/p/awe/wpaper/461.html
   My bibliography  Save this paper

Forecasting Core Inflation in India: A Four-Step Approach

Author

Listed:
  • Rishabh Choudhary
  • Chetan Ghate

  • Md Arbaj Meman

    (Institute of Economic Growth, Delhi)

Abstract

We propose a novel approach to forecasting core inflation in India, whose average contribution to headline inflation has been about 55 percent since January 2016. Our approach involves using the dis-aggregated components of core inflation, as well as the construction of a demand index using high frequency (HF) indicators. We find that individually forecasting and then aggregating core CPI components improves the short-term forecasting accuracy of core inflation. However, forecasting aggregate core inflation directly is more effective for longer horizons. We estimate a demand index using high frequency indicators. We find that the inclusion of the demand index and other co-variates enhances forecasting efficacy by capturing demand-side factors specific to the Indian economy. We also find that an accurate specification of the dis-aggregate components model contributes to maximizing prediction accuracy.

Suggested Citation

  • Rishabh Choudhary & Chetan Ghate & Md Arbaj Meman, 2023. "Forecasting Core Inflation in India: A Four-Step Approach," IEG Working Papers 461, Institute of Economic Growth.
  • Handle: RePEc:awe:wpaper:461
    as

    Download full text from publisher

    File URL: https://iegindia.org/upload/publication/Workpap/WP461.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David F. Hendry & Kirstin Hubrich, 2011. "Combining Disaggregate Forecasts or Combining Disaggregate Information to Forecast an Aggregate," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(2), pages 216-227, April.
    2. Michael P. Clements & David F. Hendry, 2002. "Modelling methodology and forecast failure," Econometrics Journal, Royal Economic Society, vol. 5(2), pages 319-344, June.
    3. Kausik Chaudhuri & Saumitra N. Bhaduri, 2019. "Inflation Forecast: Just use the Disaggregate or Combine it with the Aggregate," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(2), pages 331-343, June.
    4. Marek Jarociński & Michele Lenza, 2018. "An Inflation‐Predicting Measure of the Output Gap in the Euro Area," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(6), pages 1189-1224, September.
    5. Biernacki, Christophe & Celeux, Gilles & Govaert, Gerard, 2003. "Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 561-575, January.
    6. Hubrich, Kirstin, 2005. "Forecasting euro area inflation: Does aggregating forecasts by HICP component improve forecast accuracy?," International Journal of Forecasting, Elsevier, vol. 21(1), pages 119-136.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aron, Janine & Muellbauer, John, 2012. "Improving forecasting in an emerging economy, South Africa: Changing trends, long run restrictions and disaggregation," International Journal of Forecasting, Elsevier, vol. 28(2), pages 456-476.
    2. Ivan Kitov & Oleg Kitov, 2013. "Does Banque de France control inflation and unemployment?," Papers 1311.1097, arXiv.org.
    3. Brüggemann, Ralf & Lütkepohl, Helmut, 2013. "Forecasting contemporaneous aggregates with stochastic aggregation weights," International Journal of Forecasting, Elsevier, vol. 29(1), pages 60-68.
    4. Joseph, Andreas & Potjagailo, Galina & Chakraborty, Chiranjit & Kapetanios, George, 2024. "Forecasting UK inflation bottom up," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1521-1538.
    5. Jing Zeng, 2015. "Combining Country-Specific Forecasts when Forecasting Euro Area Macroeconomic Aggregates," Working Paper Series of the Department of Economics, University of Konstanz 2015-11, Department of Economics, University of Konstanz.
    6. Giancarlo Lutero & Marco Marini, 2010. "Direct vs Indirect Forecasts of Foreign Trade Unit Value Indices," Rivista di statistica ufficiale, ISTAT - Italian National Institute of Statistics - (Rome, ITALY), vol. 12(2-3), pages 73-96, October.
    7. Muellbauer, John & Aron, Janine & Sebudde, Rachel, 2015. "Inflation forecasting models for Uganda: is mobile money relevant?," CEPR Discussion Papers 10739, C.E.P.R. Discussion Papers.
    8. Gregor Bäurle & Elizabeth Steiner & Gabriel Züllig, 2021. "Forecasting the production side of GDP," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 458-480, April.
    9. Katja Heinisch & Rolf Scheufele, 2018. "Bottom-up or direct? Forecasting German GDP in a data-rich environment," Empirical Economics, Springer, vol. 54(2), pages 705-745, March.
    10. Viacheslav Kramkov, 2023. "Does CPI disaggregation improve inflation forecast accuracy?," Bank of Russia Working Paper Series wps112, Bank of Russia.
    11. Angela Capolongo & Claudia Pacella, 2021. "Forecasting inflation in the euro area: countries matter!," Empirical Economics, Springer, vol. 61(5), pages 2477-2499, November.
    12. Kirstin Hubrich & Kenneth D. West, 2010. "Forecast evaluation of small nested model sets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 574-594.
    13. Cobb, Marcus P A, 2017. "Joint Forecast Combination of Macroeconomic Aggregates and Their Components," MPRA Paper 76556, University Library of Munich, Germany.
    14. Bańbura, Marta & Bobeica, Elena, 2023. "Does the Phillips curve help to forecast euro area inflation?," International Journal of Forecasting, Elsevier, vol. 39(1), pages 364-390.
    15. Faust, Jon & Wright, Jonathan H., 2013. "Forecasting Inflation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 2-56, Elsevier.
    16. Carrera, Cesar & Ledesma, Alan, 2015. "Proyección de la inflación agregada con modelos de vectores autorregresivos bayesianos," Working Papers 2015-003, Banco Central de Reserva del Perú.
    17. Kirstin Hubrich & Frauke Skudelny, 2017. "Forecast Combination for Euro Area Inflation: A Cure in Times of Crisis?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(5), pages 515-540, August.
    18. Dées, Stéphane & Güntner, Jochen, 2014. "Analysing and forecasting price dynamics across euro area countries and sectors: a panel VAR approach," Working Paper Series 1724, European Central Bank.
    19. Nicoletta Pashourtidou & Christos Papamichael & Charalampos Karagiannakis, 2018. "Forecasting economic activity in sectors of the Cypriot economy," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 12(2), pages 24-66, December.
    20. Barakchian , Seyed Mahdi & Bayat , Saeed & Karami , Hooman, 2013. "Common Factors of CPI Sub-aggregates and Forecast of Inflation," Journal of Money and Economy, Monetary and Banking Research Institute, Central Bank of the Islamic Republic of Iran, vol. 8(4), pages 1-17, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:awe:wpaper:461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/iegggin.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.