IDEAS home Printed from https://ideas.repec.org/p/arx/papers/math-0503055.html
   My bibliography  Save this paper

Analysis of a Class of Likelihood Based Continuous Time Stochastic Volatility Models including Ornstein-Uhlenbeck Models in Financial Economics

Author

Listed:
  • Lancelot F. James

Abstract

In a series of recent papers Barndorff-Nielsen and Shephard introduce an attractive class of continuous time stochastic volatility models for financial assets where the volatility processes are functions of positive Ornstein-Uhlenbeck(OU) processes. This models are known to be substantially more flexible than Gaussian based models. One current problem of this approach is the unavailability of a tractable exact analysis of likelihood based stochastic volatility models for the returns of log prices of stocks. With this point in mind, the likelihood models of Barndorff-Nielsen and Shephard are viewed as members of a much larger class of models. That is likelihoods based on n conditionally independent Normal random variables whose mean and variance are representable as linear functionals of a common unobserved Poisson random measure. The analysis of these models is facilitated by applying the methods in James (2005, 2002), in particular an Esscher type transform of Poisson random measures; in conjunction with a special case of the Weber-Sonine formula. It is shown that the marginal likelihood may be expressed in terms of a multidimensional Fourier-cosine transform. This yields tractable forms of the likelihood and also allows a full Bayesian posterior analysis of the integrated volatility process. A general formula for the posterior density of the log price given the observed data is derived, which could potentially have applications to option pricing. We extend the models to include leverage effects in section 5. It is shown that inference does not necessarily require simulation of random measures. Rather, classical numerical integration can be used in the most general cases.

Suggested Citation

  • Lancelot F. James, 2005. "Analysis of a Class of Likelihood Based Continuous Time Stochastic Volatility Models including Ornstein-Uhlenbeck Models in Financial Economics," Papers math/0503055, arXiv.org, revised Aug 2005.
  • Handle: RePEc:arx:papers:math/0503055
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/math/0503055
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters,in: Theory Of Valuation, chapter 8, pages 229-288 World Scientific Publishing Co. Pte. Ltd..
    2. Ole E. Barndorff-Nielsen, 2003. "Integrated OU Processes and Non-Gaussian OU-based Stochastic Volatility Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(2), pages 277-295.
    3. Bjørn Eraker & Michael Johannes & Nicholas Polson, 2003. "The Impact of Jumps in Volatility and Returns," Journal of Finance, American Finance Association, vol. 58(3), pages 1269-1300, June.
    4. Fred Espen Benth & Kenneth Hvistendahl Karlsen & Kristin Reikvam, 2003. "Merton's portfolio optimization problem in a Black and Scholes market with non-Gaussian stochastic volatility of Ornstein-Uhlenbeck type," Mathematical Finance, Wiley Blackwell, vol. 13(2), pages 215-244.
    5. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    6. Gareth O. Roberts & Omiros Papaspiliopoulos & Petros Dellaportas, 2004. "Bayesian inference for non-Gaussian Ornstein-Uhlenbeck stochastic volatility processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(2), pages 369-393.
    7. Ishwaran, Hemant & James, Lancelot F., 2004. "Computational Methods for Multiplicative Intensity Models Using Weighted Gamma Processes: Proportional Hazards, Marked Point Processes, and Panel Count Data," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 175-190, January.
    8. Elisa Nicolato & Emmanouil Venardos, 2003. "Option Pricing in Stochastic Volatility Models of the Ornstein-Uhlenbeck type," Mathematical Finance, Wiley Blackwell, vol. 13(4), pages 445-466.
    9. repec:dau:papers:123456789/1392 is not listed on IDEAS
    10. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    11. Helyette Geman & P. Carr & D. Madan & M. Yor, 2003. "Stochastic Volatility for Levy Processes," Post-Print halshs-00144385, HAL.
    12. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Friedrich Hubalek & Petra Posedel, 2008. "Asymptotic analysis for a simple explicit estimator in Barndorff-Nielsen and Shephard stochastic volatility models," Papers 0807.3479, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:math/0503055. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.