IDEAS home Printed from https://ideas.repec.org/p/arx/papers/cond-mat-0403761.html
   My bibliography  Save this paper

Long memory stochastic volatility in option pricing

Author

Listed:
  • Sergei Fedotov
  • Abby Tan

Abstract

The aim of this paper is to present a simple stochastic model that accounts for the effects of a long-memory in volatility on option pricing. The starting point is the stochastic Black-Scholes equation involving volatility with long-range dependence. We consider the option price as a sum of classical Black-Scholes price and random deviation describing the risk from the random volatility. By using the fact the option price and random volatility change on different time scales, we find the asymptotic equation for the derivation involving fractional Brownian motion. The solution to this equation allows us to find the pricing bands for options.

Suggested Citation

  • Sergei Fedotov & Abby Tan, 2004. "Long memory stochastic volatility in option pricing," Papers cond-mat/0403761, arXiv.org, revised Sep 2004.
  • Handle: RePEc:arx:papers:cond-mat/0403761
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/cond-mat/0403761
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sergei Fedotov & Sergei Mikhailov, 2001. "Option Pricing For Incomplete Markets Via Stochastic Optimization: Transaction Costs, Adaptive Control And Forecast," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 179-195.
    2. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sergei Fedotov & Stephanos Panayides, 2004. "An Adaptive Method for Valuing an Option on Assets with Uncertainty in Volatility," Papers cond-mat/0410294, arXiv.org, revised Jan 2006.
    2. Bentes, Sonia R. & Menezes, Rui, 2013. "On the predictability of realized volatility using feasible GLS," Journal of Asian Economics, Elsevier, vol. 28(C), pages 58-66.
    3. Christos Floros & Konstantinos Gkillas & Christoforos Konstantatos & Athanasios Tsagkanos, 2020. "Realized Measures to Explain Volatility Changes over Time," JRFM, MDPI, vol. 13(6), pages 1-19, June.
    4. Heejoon Han & Myung D. Park, 2013. "Comparison of Realized Measure and Implied Volatility in Forecasting Volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 522-533, September.
    5. Ernst Konrad, 2009. "The impact of monetary policy surprises on asset return volatility: the case of Germany," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 23(2), pages 111-135, June.
    6. Charles, Amélie, 2010. "The day-of-the-week effects on the volatility: The role of the asymmetry," European Journal of Operational Research, Elsevier, vol. 202(1), pages 143-152, April.
    7. Ralf Becker & Adam Clements & Robert O'Neill, 2018. "A Multivariate Kernel Approach to Forecasting the Variance Covariance of Stock Market Returns," Econometrics, MDPI, vol. 6(1), pages 1-27, February.
    8. Ricardo Crisóstomo, 2021. "Estimating real‐world probabilities: A forward‐looking behavioral framework," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(11), pages 1797-1823, November.
    9. Baris Kocaarslan & Ugur Soytas, 2025. "How do the reserve currency and uncertainties in major markets affect the uncertainty of oil prices over time?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 30(2), pages 2016-2041, April.
    10. Chao Wang & Richard Gerlach, 2021. "A Bayesian realized threshold measurement GARCH framework for financial tail risk forecasting," Papers 2106.00288, arXiv.org, revised Oct 2022.
    11. E. Ramos-P'erez & P. J. Alonso-Gonz'alez & J. J. N'u~nez-Vel'azquez, 2020. "Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network," Papers 2006.16383, arXiv.org, revised Aug 2020.
    12. Novkovska, Blagica & Serafimovic, Gordana, 2018. "Recognizing The Vulnerability Of Generation Z To Economic And Social Risks," UTMS Journal of Economics, University of Tourism and Management, Skopje, Macedonia, vol. 9(1), pages 29-37.
    13. CHIA-LIN CHANG & MICHAEL McALEER & ROENGCHAI TANSUCHAT, 2012. "Modelling Long Memory Volatility In Agricultural Commodity Futures Returns," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 1-27.
    14. Giot, Pierre & Petitjean, Mikael, 2007. "The information content of the Bond-Equity Yield Ratio: Better than a random walk?," International Journal of Forecasting, Elsevier, vol. 23(2), pages 289-305.
    15. Wei Liu & Bruce Morley, 2009. "Volatility Forecasting in the Hang Seng Index using the GARCH Approach," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 16(1), pages 51-63, March.
    16. Orkun ÇELİK & Deniz ERER & Elif ERER, 2018. "2008 Küresel Krizinin Bireysel Emeklilik Fonları Oynaklığı Üzerindeki Etkisi: Türkiye Örneği," Sosyoekonomi Journal, Sosyoekonomi Society, issue 26(35).
    17. Wilms, Ines & Rombouts, Jeroen & Croux, Christophe, 2021. "Multivariate volatility forecasts for stock market indices," International Journal of Forecasting, Elsevier, vol. 37(2), pages 484-499.
    18. Huang, Alex YiHou & Peng, Sheng-Pen & Li, Fangjhy & Ke, Ching-Jie, 2011. "Volatility forecasting of exchange rate by quantile regression," International Review of Economics & Finance, Elsevier, vol. 20(4), pages 591-606, October.
    19. Xiang Gao & Kees Koedijk & Thomas Walther & Zhan Wang, 2022. "Relative Investor Sentiment Measurement," Working Papers 2205, Utrecht School of Economics.
    20. Selçuk, Faruk & Gençay, Ramazan, 2006. "Intraday dynamics of stock market returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 375-387.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:cond-mat/0403761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.