IDEAS home Printed from https://ideas.repec.org/p/arx/papers/cond-mat-0206047.html
   My bibliography  Save this paper

Endogeneous Versus Exogeneous Shocks in Systems with Memory

Author

Listed:
  • D. Sornette

    (UCLA and CNRS-Univ. Nice)

  • A. Helmstetter

    (Univ. Grenoble)

Abstract

Systems with long-range persistence and memory are shown to exhibit different precursory as well as recovery patterns in response to shocks of exogeneous versus endogeneous origins. By endogeneous, we envision either fluctuations resulting from an underlying chaotic dynamics or from a stochastic forcing origin which may be external or be an effective coarse-grained description of the microscopic fluctuations. In this scenario, endogeneous shocks result from a kind of constructive interference of accumulated fluctuations whose impacts survive longer than the large shocks themselves. As a consequence, the recovery after an endogeneous shock is in general slower at early times and can be at long times either slower or faster than after an exogeneous perturbation. This offers the tantalizing possibility of distinguishing between an endogeneous versus exogeneous cause of a given shock, even when there is no ``smoking gun.'' This could help in investigating the exogeneous versus self-organized origins in problems such as the causes of major biological extinctions, of change of weather regimes and of the climate, in tracing the source of social upheaval and wars, and so on. Sornette, Malevergne and Muzy have already shown how this concept can be applied concretely to differentiate the effects on financial markets of the Sept. 11, 2001 attack or of the coup against Gorbachev on Aug., 19, 1991 (exogeneous) from financial crashes such as Oct. 1987 (endogeneous).

Suggested Citation

  • D. Sornette & A. Helmstetter, 2002. "Endogeneous Versus Exogeneous Shocks in Systems with Memory," Papers cond-mat/0206047, arXiv.org.
  • Handle: RePEc:arx:papers:cond-mat/0206047
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/cond-mat/0206047
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Charles R. Marshall, 1998. "Mass extinction probed," Nature, Nature, vol. 392(6671), pages 17-19, March.
    2. Frank T. Kyte, 1998. "A meteorite from the Cretaceous/Tertiary boundary," Nature, Nature, vol. 396(6708), pages 237-239, November.
    3. James W. Kirchner & Anne Weil, 1998. "No fractals in fossil extinction statistics," Nature, Nature, vol. 395(6700), pages 337-338, September.
    4. Ricard V. Solé & Susanna C. Manrubia & Michael Benton & Per Bak, 1997. "Self-similarity of extinction statistics in the fossil record," Nature, Nature, vol. 388(6644), pages 764-767, August.
    5. D. Sornette & Y. Malevergne & J. F. Muzy, 2002. "Volatility fingerprints of large shocks: Endogeneous versus exogeneous," Papers cond-mat/0204626, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Johansen & D. Sornette, 2002. "Endogenous versus Exogenous Crashes in Financial Markets," Papers cond-mat/0210509, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sornette, D & Helmstetter, A, 2003. "Endogenous versus exogenous shocks in systems with memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 318(3), pages 577-591.
    2. M. E. J. Newman & Gunther J. Eble, 1998. "Power Spectra of Extinction in the Fossil Record," Working Papers 98-12-109, Santa Fe Institute.
    3. M. E. J. Newman & R. G. Palmer, 1999. "Models of Extinction: A Review," Working Papers 99-08-061, Santa Fe Institute.
    4. Marina E Wosniack & Marcos C Santos & Ernesto P Raposo & Gandhi M Viswanathan & Marcos G E da Luz, 2017. "The evolutionary origins of Lévy walk foraging," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-31, October.
    5. Ricard V. Sole & Susanna C. Manrubia & Juan Perez-Mercader & Michael Benton & Per Bak, 1998. "Long-Range Correlations in the Fossil Record and the Fractal Nature of Macroevolution," Working Papers 98-11-096, Santa Fe Institute.
    6. A. Johansen & D. Sornette, 2002. "Endogenous versus Exogenous Crashes in Financial Markets," Papers cond-mat/0210509, arXiv.org.
    7. West, Bruce J. & West, Damien, 2011. "Are allometry and macroevolution related?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(10), pages 1733-1736.
    8. P. Peirano & D. Challet, 2012. "Baldovin-Stella stochastic volatility process and Wiener process mixtures," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 85(8), pages 1-12, August.
    9. M. E. J. Newman & Gunther J. Eble, 1998. "Decline in Extinction Rates and Scale Invariance in the Fossil Record," Working Papers 98-09-081, Santa Fe Institute.
    10. Gunther J. Eble, 1999. "Originations: Land and Sea Compared," Working Papers 99-04-028, Santa Fe Institute.
    11. Jesus Marin & Ricard V. Sole, 1998. "Macroevolutionary Algorithms: A New Optimization Method on Fitness Landscapes," Working Papers 98-11-108, Santa Fe Institute.
    12. Eyal Carmi & Gal OEstreicher-Singer & Arun Sundararajan, 2010. "Is Oprah Contagious? Identifying Demand Spillovers in Product Networks," Working Papers 10-18, NET Institute.
    13. Alsulami, Amer & Petrovskii, Sergei, 2023. "A model of mass extinction accounting for the differential evolutionary response of species to a climate change," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    14. O. A. Vladimirova, 2018. "Influence Of A News Background On Company Cost: Review Of Literature And Direction Of Future Researches," Strategic decisions and risk management, Real Economy Publishing House, issue 4.
    15. D. Sornette, 2008. "Nurturing breakthroughs: lessons from complexity theory," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 3(2), pages 165-181, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:cond-mat/0206047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.