IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.16563.html
   My bibliography  Save this paper

Probability Weighting Meets Heavy Tails: An Econometric Framework for Behavioral Asset Pricing

Author

Listed:
  • Akash Deep
  • Svetlozar T. Rachev
  • Frank J. Fabozzi

Abstract

We develop an econometric framework integrating heavy-tailed Student's $t$ distributions with behavioral probability weighting while preserving infinite divisibility. Using 432{,}752 observations across 86 assets (2004--2024), we demonstrate Student's $t$ specifications outperform Gaussian models in 88.4\% of cases. Bounded probability-weighting transformations preserve mathematical properties required for dynamic pricing. Gaussian models underestimate 99\% Value-at-Risk by 19.7\% versus 3.2\% for our specification. Joint estimation procedures identify tail and behavioral parameters with established asymptotic properties. Results provide robust inference for asset-pricing applications where heavy tails and behavioral distortions coexist.

Suggested Citation

  • Akash Deep & Svetlozar T. Rachev & Frank J. Fabozzi, 2025. "Probability Weighting Meets Heavy Tails: An Econometric Framework for Behavioral Asset Pricing," Papers 2511.16563, arXiv.org.
  • Handle: RePEc:arx:papers:2511.16563
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.16563
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.16563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.