IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.15689.html

Semiparametric Estimation of Fractional Integration: An Evaluation of Local Whittle Methods

Author

Listed:
  • Jason R. Blevins

Abstract

Fractionally integrated time series, exhibiting long memory with slowly decaying autocorrelations, are frequently encountered in economics, finance, and related fields. Since the seminal work of Robinson (1995), a variety of semiparametric local Whittle estimators have been proposed for estimating the memory parameter $d$. However, applied researchers must determine which estimator to use, and under what conditions. This paper compares several local Whittle estimators, first replicating key findings from the literature and then extending these with new Monte Carlo experiments and in-depth empirical studies. We compare how each estimator performs in the presence of short-run dynamics, unknown means, time trends, and structural breaks, and discuss how to interpret potentially conflicting results with real datasets. Based on the findings, we offer guidance to practitioners on estimator choice, bandwidth selection, and the potential diagnostic value of disagreements between estimators.

Suggested Citation

  • Jason R. Blevins, 2025. "Semiparametric Estimation of Fractional Integration: An Evaluation of Local Whittle Methods," Papers 2511.15689, arXiv.org, revised Dec 2025.
  • Handle: RePEc:arx:papers:2511.15689
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.15689
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andreas Noack Jensen & Morten Ørregaard Nielsen, 2014. "A Fast Fractional Difference Algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(5), pages 428-436, August.
    2. John Geweke & Susan Porter‐Hudak, 1983. "The Estimation And Application Of Long Memory Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 221-238, July.
    3. Christopher F Baum & Stan Hurn & Kenneth Lindsay, 2020. "Local Whittle estimation of the long-memory parameter," Stata Journal, StataCorp LLC, vol. 20(3), pages 565-583, September.
    4. Arteche, Josu & Orbe, Jesus, 2017. "A strategy for optimal bandwidth selection in Local Whittle estimation," Econometrics and Statistics, Elsevier, vol. 4(C), pages 3-17.
    5. Shimotsu, Katsumi, 2010. "Exact Local Whittle Estimation Of Fractional Integration With Unknown Mean And Time Trend," Econometric Theory, Cambridge University Press, vol. 26(2), pages 501-540, April.
    6. Arteche, Josu & Orbe, Jesus, 2016. "A bootstrap approximation for the distribution of the Local Whittle estimator," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 645-660.
    7. Simon Wingert & Christian Leschinski & Philipp Sibbertsen, 2020. "Seasonality robust local whittle estimation," Applied Economics Letters, Taylor & Francis Journals, vol. 27(18), pages 1489-1494, October.
    8. Arteche, Josu, 2020. "Exact Local Whittle Estimation In Long Memory Time Series With Multiple Poles," Econometric Theory, Cambridge University Press, vol. 36(6), pages 1064-1098, December.
    9. Adam M Sykulski & Sofia C Olhede & Arthur P Guillaumin & Jonathan M Lilly & Jeffrey J Early, 2019. "The debiased Whittle likelihood," Biometrika, Biometrika Trust, vol. 106(2), pages 251-266.
    10. Nielsen, Morten Orregaard, 2007. "Local Whittle Analysis of Stationary Fractional Cointegration and the ImpliedRealized Volatility Relation," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 427-446, October.
    11. Schotman, Peter C & van Dijk, Herman K, 1991. "On Bayesian Routes to Unit Roots," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(4), pages 387-401, Oct.-Dec..
    12. Degui Li & Peter M. Robinson & Han Lin Shang, 2021. "Local Whittle estimation of long‐range dependence for functional time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(5-6), pages 685-695, September.
    13. Baillie, Richard T. & Kapetanios, George & Papailias, Fotis, 2014. "Bandwidth selection by cross-validation for forecasting long memory financial time series," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 129-143.
    14. Shimotsu, Katsumi, 2012. "Exact local Whittle estimation of fractionally cointegrated systems," Journal of Econometrics, Elsevier, vol. 169(2), pages 266-278.
    15. Clifford M. Hurvich & Willa W. Chen, 2000. "An Efficient Taper for Potentially Overdifferenced Long‐memory Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(2), pages 155-180, March.
    16. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    17. Hou, Jie & Perron, Pierre, 2014. "Modified local Whittle estimator for long memory processes in the presence of low frequency (and other) contaminations," Journal of Econometrics, Elsevier, vol. 182(2), pages 309-328.
    18. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    19. Marc Henry, 2001. "Robust Automatic Bandwidth for Long Memory," Journal of Time Series Analysis, Wiley Blackwell, vol. 22(3), pages 293-316, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    2. Uwe Hassler & Marc-Oliver Pohle, 2019. "Forecasting under Long Memory and Nonstationarity," Papers 1910.08202, arXiv.org.
    3. Christian Leschinski & Michelle Voges & Philipp Sibbertsen, 2021. "A comparison of semiparametric tests for fractional cointegration," Statistical Papers, Springer, vol. 62(4), pages 1997-2030, August.
    4. Yaya, OlaOluwa S. & Lukman, Adewale F. & Vo, Xuan Vinh, 2022. "Persistence and volatility spillovers of bitcoin price to gold and silver prices," Resources Policy, Elsevier, vol. 79(C).
    5. Alia Afzal & Philipp Sibbertsen, 2021. "Modeling fractional cointegration between high and low stock prices in Asian countries," Empirical Economics, Springer, vol. 60(2), pages 661-682, February.
    6. Zied Ftiti & Slim Chaouachi, 2018. "What Can We Learn About the Real Exchange Rate Behavior in the Case of a Peripheral Country?," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 16(3), pages 681-707, September.
    7. Arteche, Josu & Orbe, Jesus, 2016. "A bootstrap approximation for the distribution of the Local Whittle estimator," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 645-660.
    8. Arteche, Josu & Orbe, Jesus, 2017. "A strategy for optimal bandwidth selection in Local Whittle estimation," Econometrics and Statistics, Elsevier, vol. 4(C), pages 3-17.
    9. Shang Han Lin, 2020. "A Comparison of Hurst Exponent Estimators in Long-range Dependent Curve Time Series," Journal of Time Series Econometrics, De Gruyter, vol. 12(1), pages 1-39, January.
    10. Becker, Janis & Leschinski, Christian & Sibbertsen, Philipp, 2019. "Robust Multivariate Local Whittle Estimation and Spurious Fractional Cointegration," Hannover Economic Papers (HEP) dp-660, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    11. Alexander Boca Saravia & Gabriel Rodríguez, 2022. "Presidential approval in Peru: an empirical analysis using a fractionally cointegrated VAR," Economic Change and Restructuring, Springer, vol. 55(3), pages 1973-2010, August.
    12. Ding, Liang & Luo, Yi & Lin, Yan & Huang, Yirong, 2021. "Revisiting the relations between Hurst exponent and fractional differencing parameter for long memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    13. Giorgio Canarella & Luis A. Gil-Alana & Rangan Gupta & Stephen M. Miller, 2020. "Modeling US historical time-series prices and inflation using alternative long-memory approaches," Empirical Economics, Springer, vol. 58(4), pages 1491-1511, April.
    14. Shuping Shi & Jun Yu, 2023. "Volatility Puzzle: Long Memory or Antipersistency," Management Science, INFORMS, vol. 69(7), pages 3861-3883, July.
    15. Ata Assaf & Luis Alberiko Gil-Alana & Khaled Mokni, 2022. "True or spurious long memory in the cryptocurrency markets: evidence from a multivariate test and other Whittle estimation methods," Empirical Economics, Springer, vol. 63(3), pages 1543-1570, September.
    16. Sibbertsen, Philipp & Leschinski, Christian & Busch, Marie, 2018. "A multivariate test against spurious long memory," Journal of Econometrics, Elsevier, vol. 203(1), pages 33-49.
    17. Guglielmo Maria Caporale & Luis A. Gil-Alana, 2020. "Modelling Loans to Non-Financial Corporations within the Eurozone: A Long-Memory Approach," CESifo Working Paper Series 8674, CESifo.
    18. Al-Shboul, Mohammad & Alsharari, Nizar, 2019. "The dynamic behavior of evolving efficiency: Evidence from the UAE stock markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 73(C), pages 119-135.
    19. Marie Busch & Philipp Sibbertsen, 2018. "An Overview of Modified Semiparametric Memory Estimation Methods," Econometrics, MDPI, vol. 6(1), pages 1-21, March.
    20. Halser, Christoph & Paraschiv, Florentina & Russo, Marianna, 2023. "Oil–gas price relationships on three continents: Disruptions and equilibria," Journal of Commodity Markets, Elsevier, vol. 31(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.15689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.