IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.07571.html
   My bibliography  Save this paper

Forecasting implied volatility surface with generative diffusion models

Author

Listed:
  • Chen Jin
  • Ankush Agarwal

Abstract

We introduce a conditional Denoising Diffusion Probabilistic Model (DDPM) for generating arbitrage-free implied volatility (IV) surfaces, offering a more stable and accurate alternative to existing GAN-based approaches. To capture the path-dependent nature of volatility dynamics, our model is conditioned on a rich set of market variables, including exponential weighted moving averages (EWMAs) of historical surfaces, returns and squared returns of underlying asset, and scalar risk indicators like VIX. Empirical results demonstrate our model significantly outperforms leading GAN-based models in capturing the stylized facts of IV dynamics. A key challenge is that historical data often contains small arbitrage opportunities in the earlier dataset for training, which conflicts with the goal of generating arbitrage-free surfaces. We address this by incorporating a standard arbitrage penalty into the loss function, but apply it using a novel, parameter-free weighting scheme based on the signal-to-noise ratio (SNR) that dynamically adjusts the penalty's strength across the diffusion process. We also show a formal analysis of this trade-off and provide a proof of convergence showing that the penalty introduces a small, controllable bias that steers the model toward the manifold of arbitrage-free surfaces while ensuring the generated distribution remains close to the real-world data.

Suggested Citation

  • Chen Jin & Ankush Agarwal, 2025. "Forecasting implied volatility surface with generative diffusion models," Papers 2511.07571, arXiv.org.
  • Handle: RePEc:arx:papers:2511.07571
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.07571
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.07571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.