IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.07571.html

Forecasting implied volatility surface with generative diffusion models

Author

Listed:
  • Chen Jin
  • Ankush Agarwal

Abstract

We introduce a conditional Denoising Diffusion Probabilistic Model (DDPM) for generating arbitrage-free implied volatility (IV) surfaces, offering a more stable and accurate alternative to existing GAN-based approaches. To capture the path-dependent nature of volatility dynamics, our model is conditioned on a rich set of market variables, including exponential weighted moving averages (EWMAs) of historical surfaces, returns and squared returns of underlying asset, and scalar risk indicators like VIX. Empirical results demonstrate our model significantly outperforms leading GAN-based models in capturing the stylized facts of IV dynamics. A key challenge is that historical data often contains small arbitrage opportunities in the earlier dataset for training, which conflicts with the goal of generating arbitrage-free surfaces. We address this by incorporating a standard arbitrage penalty into the loss function, but apply it using a novel, parameter-free weighting scheme based on the signal-to-noise ratio (SNR) that dynamically adjusts the penalty's strength across the diffusion process. We also show a formal analysis of this trade-off and provide a proof of convergence showing that the penalty introduces a small, controllable bias that steers the model toward the manifold of arbitrage-free surfaces while ensuring the generated distribution remains close to the real-world data.

Suggested Citation

  • Chen Jin & Ankush Agarwal, 2025. "Forecasting implied volatility surface with generative diffusion models," Papers 2511.07571, arXiv.org.
  • Handle: RePEc:arx:papers:2511.07571
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.07571
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Milena Vuletić & Rama Cont, 2024. "VolGAN: A Generative Model for Arbitrage-Free Implied Volatility Surfaces," Applied Mathematical Finance, Taylor & Francis Journals, vol. 31(4), pages 203-238, July.
    2. Rama Cont & Jose da Fonseca, 2002. "Dynamics of implied volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 45-60.
    3. Minshuo Chen & Renyuan Xu & Yumin Xu & Ruixun Zhang, 2025. "Diffusion Factor Models: Generating High-Dimensional Returns with Factor Structure," Papers 2504.06566, arXiv.org, revised Jan 2026.
    4. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Wang & Shuaiqiang Liu & Cornelis Vuik, 2025. "Controllable Generation of Implied Volatility Surfaces with Variational Autoencoders," Papers 2509.01743, arXiv.org.
    2. Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2021. "Closed-form implied volatility surfaces for stochastic volatility models with jumps," Journal of Econometrics, Elsevier, vol. 222(1), pages 364-392.
    3. Jaehyuk Choi, 2024. "Exact simulation scheme for the Ornstein-Uhlenbeck driven stochastic volatility model with the Karhunen-Lo\`eve expansions," Papers 2402.09243, arXiv.org.
    4. A. Monteiro & R. Tütüncü & L. Vicente, 2011. "Estimation of risk-neutral density surfaces," Computational Management Science, Springer, vol. 8(4), pages 387-414, November.
    5. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    6. Seungho Yang & Jaewook Lee, 2014. "Do affine jump-diffusion models require global calibration? Empirical studies from option markets," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 111-123, January.
    7. Borak, Szymon & Fengler, Matthias R. & Härdle, Wolfgang Karl, 2005. "DSFM fitting of implied volatility surfaces," SFB 649 Discussion Papers 2005-022, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    8. Jianhui Li & Sebastian A. Gehricke & Jin E. Zhang, 2019. "How do US options traders “smirk” on China? Evidence from FXI options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(11), pages 1450-1470, November.
    9. Manfred Gilli & Enrico Schumann, 2012. "Heuristic optimisation in financial modelling," Annals of Operations Research, Springer, vol. 193(1), pages 129-158, March.
    10. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    11. Chen, Si & Zhou, Zhen & Li, Shenghong, 2016. "An efficient estimate and forecast of the implied volatility surface: A nonlinear Kalman filter approach," Economic Modelling, Elsevier, vol. 58(C), pages 655-664.
    12. Nappo, Giovanna & Marchetti, Fabio Massimo & Vagnani, Gianluca, 2023. "Traders’ heterogeneous beliefs about stock volatility and the implied volatility skew in financial options markets," Finance Research Letters, Elsevier, vol. 53(C).
    13. repec:hum:wpaper:sfb649dp2005-020 is not listed on IDEAS
    14. Toby Daglish & John Hull & Wulin Suo, 2007. "Volatility surfaces: theory, rules of thumb, and empirical evidence," Quantitative Finance, Taylor & Francis Journals, vol. 7(5), pages 507-524.
    15. Fengler, Matthias R. & Härdle, Wolfgang & Mammen, Enno, 2003. "Implied volatility string dynamics," SFB 373 Discussion Papers 2003,54, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    16. Martin Schweizer & Johannes Wissel, 2008. "Arbitrage-free market models for option prices: the multi-strike case," Finance and Stochastics, Springer, vol. 12(4), pages 469-505, October.
    17. Sudarshan Kumar & Sobhesh Kumar Agarwalla & Jayanth R. Varma & Vineet Virmani, 2023. "Harvesting the volatility smile in a large emerging market: A Dynamic Nelson–Siegel approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(11), pages 1615-1644, November.
    18. Shuaiqiang Liu & Cornelis W. Oosterlee & Sander M. Bohte, 2019. "Pricing Options and Computing Implied Volatilities using Neural Networks," Risks, MDPI, vol. 7(1), pages 1-22, February.
    19. Pascal François & Rémi Galarneau‐Vincent & Geneviève Gauthier & Frédéric Godin, 2022. "Venturing into uncharted territory: An extensible implied volatility surface model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(10), pages 1912-1940, October.
    20. Jan Maruhn & Morten Nalholm & Matthias Fengler, 2011. "Static hedges for reverse barrier options with robustness against skew risk: an empirical analysis," Quantitative Finance, Taylor & Francis Journals, vol. 11(5), pages 711-727.
    21. Jingzhi Huang & Liuren Wu, 2004. "Specification Analysis of Option Pricing Models Based on Time- Changed Levy Processes," Finance 0401002, University Library of Munich, Germany.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.07571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.