IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v14y2014i1p111-123.html
   My bibliography  Save this article

Do affine jump-diffusion models require global calibration? Empirical studies from option markets

Author

Listed:
  • Seungho Yang
  • Jaewook Lee

Abstract

This study presents an empirical evaluation of the efficiency and robustness of calibration methods for option pricing models with closed-form expression, specifically by using affine jump-diffusion models. To mitigate the local minima problems inherent in model calibration, we provide a global calibration method with enhanced discrete local search strategy. We compare this global calibration method with local calibration methods by using both model generated and real-market cross-sectional option data. Global calibration is highly essential for obtaining a reliable parameter set for affine jump-diffusion models and yields robust calibration results. By using the 2007 S&P 500 index options, we apply the global calibration method to 12 widely used affine jump-diffusion models. Results show that the calibrated parameters common across the models share similar values. This result verifies the robustness of global calibration. Conversely, local calibration generates different values. We also examine the predictive performance of the models and find that global calibration outperforms local calibration for the considered affine jump-diffusion models with respect to in-sample and out-of-sample errors.

Suggested Citation

  • Seungho Yang & Jaewook Lee, 2014. "Do affine jump-diffusion models require global calibration? Empirical studies from option markets," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 111-123, January.
  • Handle: RePEc:taf:quantf:v:14:y:2014:i:1:p:111-123
    DOI: 10.1080/14697688.2013.825048
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2013.825048
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2013.825048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rama Cont & Jose da Fonseca, 2002. "Dynamics of implied volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 45-60.
    2. Sol Kim, 2009. "The performance of traders' rules in options market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 29(11), pages 999-1020, November.
    3. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    4. Minenna, Marcello & Verzella, Paolo, 2008. "A revisited and stable Fourier transform method for affine jump diffusion models," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2064-2075, October.
    5. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    6. Bernard Dumas & Jeff Fleming & Robert E. Whaley, 1998. "Implied Volatility Functions: Empirical Tests," Journal of Finance, American Finance Association, vol. 53(6), pages 2059-2106, December.
    7. P. Balland, 2002. "Deterministic implied volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 31-44.
    8. Lorella Fatone & Francesca Mariani & Maria Cristina Recchioni & Francesco Zirilli, 2009. "An explicitly solvable multi‐scale stochastic volatility model: Option pricing and calibration problems," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 29(9), pages 862-893, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fengler, Matthias R. & Härdle, Wolfgang & Mammen, Enno, 2003. "Implied volatility string dynamics," SFB 373 Discussion Papers 2003,54, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    2. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    3. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    4. Pascal François & Rémi Galarneau‐Vincent & Geneviève Gauthier & Frédéric Godin, 2022. "Venturing into uncharted territory: An extensible implied volatility surface model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(10), pages 1912-1940, October.
    5. Jan Maruhn & Morten Nalholm & Matthias Fengler, 2011. "Static hedges for reverse barrier options with robustness against skew risk: an empirical analysis," Quantitative Finance, Taylor & Francis Journals, vol. 11(5), pages 711-727.
    6. Stephane Crepey, 2004. "Delta-hedging vega risk?," Quantitative Finance, Taylor & Francis Journals, vol. 4(5), pages 559-579.
    7. Alok Dixit & Shivam Singh, 2018. "Ad-Hoc Black–Scholes vis-à-vis TSRV-based Black–Scholes: Evidence from Indian Options Market," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 16(1), pages 57-88, March.
    8. Sol Kim & In Jung Song, 2021. "The traders' rule and long‐term options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(3), pages 406-436, March.
    9. Sol Kim, 2021. "Portfolio of Volatility Smiles versus Volatility Surface: Implications for pricing and hedging options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(7), pages 1154-1176, July.
    10. Tao Li, 2013. "Investors' Heterogeneity and Implied Volatility Smiles," Management Science, INFORMS, vol. 59(10), pages 2392-2412, October.
    11. Carol Alexandra & Leonardo M. Nogueira, 2005. "Optimal Hedging and Scale Inavriance: A Taxonomy of Option Pricing Models," ICMA Centre Discussion Papers in Finance icma-dp2005-10, Henley Business School, University of Reading, revised Nov 2005.
    12. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    13. Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.
    14. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    15. Chang, Eric C. & Ren, Jinjuan & Shi, Qi, 2009. "Effects of the volatility smile on exchange settlement practices: The Hong Kong case," Journal of Banking & Finance, Elsevier, vol. 33(1), pages 98-112, January.
    16. José Valentim Machado Vicente & Jaqueline Terra Moura Marins, 2019. "A Volatility Smile-Based Uncertainty Index," Working Papers Series 502, Central Bank of Brazil, Research Department.
    17. Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2021. "Closed-form implied volatility surfaces for stochastic volatility models with jumps," Journal of Econometrics, Elsevier, vol. 222(1), pages 364-392.
    18. Jobst, Andreas A., 2014. "Measuring systemic risk-adjusted liquidity (SRL)—A model approach," Journal of Banking & Finance, Elsevier, vol. 45(C), pages 270-287.
    19. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    20. A. Monteiro & R. Tütüncü & L. Vicente, 2011. "Estimation of risk-neutral density surfaces," Computational Management Science, Springer, vol. 8(4), pages 387-414, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:14:y:2014:i:1:p:111-123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.