IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.05463.html

From sectorial coarse graining to extreme coarse graining of S&P 500 correlation matrices

Author

Listed:
  • Manan Vyas
  • M. Mija'il Mart'inez-Ramos
  • Parisa Majari
  • Thomas H. Seligman

Abstract

Starting from the Pearson Correlation Matrix of stock returns and from the desire to obtain a reduced number of parameters relevant for the dynamics of a financial market, we propose to take the idea of a sectorial matrix, which would have a large number of parameters, to the reduced picture of a real symmetric $2 \times 2$ matrix, extreme case, that still conserves the desirable feature that the average correlation can be one of the parameters. This is achieved by averaging the correlation matrix over blocks created by choosing two subsets of stocks for rows and columns and averaging over each of the resulting blocks. Averaging over these blocks, we retain the average of the correlation matrix. We shall use a random selection for two equal block sizes as well as two specific, hopefully relevant, ones that do not produce equal block sizes. The results show that one of the non-random choices has somewhat different properties, whose meaning will have to be analyzed from an economy point of view.

Suggested Citation

  • Manan Vyas & M. Mija'il Mart'inez-Ramos & Parisa Majari & Thomas H. Seligman, 2025. "From sectorial coarse graining to extreme coarse graining of S&P 500 correlation matrices," Papers 2511.05463, arXiv.org.
  • Handle: RePEc:arx:papers:2511.05463
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.05463
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yacov Y. Haimes, 2009. "On the Complex Definition of Risk: A Systems‐Based Approach," Risk Analysis, John Wiley & Sons, vol. 29(12), pages 1647-1654, December.
    2. Michael C. Munnix & Takashi Shimada & Rudi Schafer & Francois Leyvraz Thomas H. Seligman & Thomas Guhr & H. E. Stanley, 2012. "Identifying States of a Financial Market," Papers 1202.1623, arXiv.org.
    3. J. E. Salgado-Hern'andez & Manan Vyas, 2023. "Non-linear correlation analysis in financial markets using hierarchical clustering," Papers 2301.05080, arXiv.org.
    4. Anirban Chakraborti & Hrishidev & Kiran Sharma & Hirdesh K. Pharasi, 2019. "Phase separation and scaling in correlation structures of financial markets," Papers 1910.06242, arXiv.org, revised Jul 2020.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. López Pérez, Mario & Mansilla Corona, Ricardo, 2022. "Ordinal synchronization and typical states in high-frequency digital markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    2. Heckens, Anton J. & Guhr, Thomas, 2022. "New collectivity measures for financial covariances and correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    3. Artur Sokolovsky & Luca Arnaboldi, 2020. "A Generic Methodology for the Statistically Uniform & Comparable Evaluation of Automated Trading Platform Components," Papers 2009.09993, arXiv.org, revised Jun 2022.
    4. Marcel Wollschlager & Rudi Schafer, 2015. "Impact of non-stationarity on estimating and modeling empirical copulas of daily stock returns," Papers 1506.08054, arXiv.org.
    5. Tobias Wand & Oliver Kamps & Hiroshi Iyetomi, 2024. "Causal Hierarchy in the Financial Market Network -- Uncovered by the Helmholtz-Hodge-Kodaira Decomposition," Papers 2408.12839, arXiv.org.
    6. Djauhari, Maman Abdurachman & Gan, Siew Lee, 2015. "Optimality problem of network topology in stocks market analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 108-114.
    7. Kanjamapornkul, K. & Pinčák, Richard & Bartoš, Erik, 2016. "The study of Thai stock market across the 2008 financial crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 117-133.
    8. Gidea, Marian & Goldsmith, Daniel & Katz, Yuri & Roldan, Pablo & Shmalo, Yonah, 2020. "Topological recognition of critical transitions in time series of cryptocurrencies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    9. Andreas Muhlbacher & Thomas Guhr, 2018. "Credit Risk Meets Random Matrices: Coping with Non-Stationary Asset Correlations," Papers 1803.00261, arXiv.org.
    10. Todea, Alexandru, 2016. "Cross-correlations between volatility, volatility persistence and stock market integration: the case of emergent stock markets," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 208-215.
    11. dos Santos Maciel, Leandro, 2023. "Brazilian stock-market efficiency before and after COVID-19: The roles of fractality and predictability," Global Finance Journal, Elsevier, vol. 58(C).
    12. Nick James & Kevin Chin, 2021. "On the systemic nature of global inflation, its association with equity markets and financial portfolio implications," Papers 2111.11022, arXiv.org, revised Jan 2022.
    13. Li, Da-Ye & Nishimura, Yusaku & Men, Ming, 2014. "Fractal markets: Liquidity and investors on different time horizons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 144-151.
    14. Xue Pan & Lei Hou & Mutua Stephen & Huijie Yang & Chenping Zhu, 2014. "Evaluation of Scaling Invariance Embedded in Short Time Series," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-27, December.
    15. Claudio Barbieri & Mattia Guerini & Mauro Napoletano, 2021. "The anatomy of government bond yields synchronization in the Eurozone," Sciences Po Economics Publications (main) hal-03373853, HAL.
    16. Nie, Chun-Xiao, 2020. "Correlation dynamics in the cryptocurrency market based on dimensionality reduction analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    17. Andr'es L. Su'arez-Cetrulo & Alejandro Cervantes & David Quintana, 2025. "ProteuS: A Generative Approach for Simulating Concept Drift in Financial Markets," Papers 2509.11844, arXiv.org.
    18. Luu, Duc Thi & Yanovski, Boyan & Lux, Thomas, 2018. "An analysis of systematic risk in worldwide econonomic sentiment indices," Economics Working Papers 2018-03, Christian-Albrechts-University of Kiel, Department of Economics.
    19. Luca Allodi & Fabio Massacci, 2017. "Security Events and Vulnerability Data for Cybersecurity Risk Estimation," Risk Analysis, John Wiley & Sons, vol. 37(8), pages 1606-1627, August.
    20. T. T. Chen & B. Zheng & Y. Li & X. F. Jiang, 2017. "New approaches in agent-based modeling of complex financial systems," Papers 1703.06840, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.05463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.